Vieira, M., Fantoni Fortunato Lavareda Martins A. E. G. "
AD-layer for spatial control of light induced degradation on pin devices."
Materials Research Society Symposium Proceedings. Vol. 336. 1994. 741-746.
AbstractIn this work we report experimental results on light induced metastability of a-Si: H p.i.n. devices with different microscopic/macroscopic structures and we discuss them in terms of improved stability through spatial control of charged defects grown during light exposure. By placing a thin (few A) intrinsic layer (i) between both p/i and i/n a-Si: H interfaces we are able to reduce the effective degradation rate through spatial modification of the electric field profile in the device. The electronic transport and the stability changes that accompany the change in microstructure (R) and hydrogen content (CH) of the i- and i′-layer, were monitored throughout the entire light induced degradation process and compared with the corresponding μT product (for both carriers) inferred through steady state photoconductivity and Flying Spot Technique (FST) measurements. Results show that the degradation rate is a function of CH and R of both layers and can be correlated with the density of microvoids and di-hydride bonding. Since the i′-layers have a higher CH bonded mainly as SiF2 radicals (R≈0.4), they act as an hindrance to the growth of the defect, in the active region, generating "gettering centers" whose localisation and density are tailored in such a way that they will control spatially the electric field profile during light exposure. Preliminary results show improvements in film's stability when the interfacial layer is included. So future progress toward more stable and efficient a-Si: H solar cells will depend on a careful engineering design of the devices. © 1994 Materials Research Society.
Fantoni, A., Vieira Martins M. R. "
Modelling heteroface of P.I.N solar cells for improving stability."
Materials Research Society Symposium Proceedings. Vol. 336. 1994. 711-716.
AbstractThe introduction into a traditional p.i.n structure of two defective buffer layers near the p/i and i/n interfaces can improve the device stability and efficiency through an enhancement of the electric field profile at the interfaces and a reduction of the available recombination bulk centers. The defectous layer ("i′-layer"), grown at a higher power density, present a high density of defects and acts as "gettering centers" able to tailor light induced defects under degradation conditions. If the i-layer density of states remains below 1016 eV-1 cm-3 and assuming a Gaussian distribution of defect states, the gettering center distribution will not affect significantly the carrier population but only its spatial distribution. We report here about a device numerical simulation that allows us to analyse the influence of the "i′-layer" position, thickness and density of states on the a-Si: H solar cells performances. Results of some systematic simulation from the ASCA program (Amorphous Solar Cell Analysis), and for different configurations will be presented. © 1994 Materials Research Society.