The introduction into a traditional p.i.n. structure of two defective buffer layers near the p/i and i/n interfaces can improve the device stability and efficiency through an enhancement of the electric field profile at the interfaces and a reduction of the available recombination bulk centers. The defectous layer (`i-layer'), grown at a higher power density, present a high density of the defects and acts as `gettering centers' able to tailor light induced defects under degradation conditions. If the i-layer density of states remains below 1016 eV-1 cm-3 and assuming a Gaussian distribution of defect states, the gettering center distribution will not affect significantly the carrier population but only its spatial distribution. We report here about a device numerical simulation that allows us to analyze the influence of the `i- layer' position, thickness and density of states on the a-Si:H solar cells performances. Results of some systematic simulation rom the ASCA program (Amorphous Solar Cell Analysis), and for different configurations will be presented.
cited By 0