b b b b b b b Martins, R.a b, Figueiredo Silva Águas Soares Marques Ferreira Fortunato J. a V. a. "
32 Linear array position sensitive detector based on NIP and hetero a-Si:H microdevices."
Journal of Non-Crystalline Solids. 299-302 (2002): 1283-1288.
AbstractIn this paper we present results concerning the performance exhibited by an integrated array of 32 one-dimensional amorphous silicon thin film position sensitive detectors based on nip and hetero amorphous silicon structures, with a total active area size below 1 cm2 linearity, its spatial resolution and response time, that make it one of the most interesting analog detector to be used in unmanned optical inspection control systems where a continuous detection process is required. This opens a wide range of applications for amorphous silicon devices in the area of image processing. © 2002 Elsevier Science B.V. All rights reserved.
Pereira, L.a, Brida Fortunato Ferreira Águas Silva Costa Teixeira Martins D. a E. a. "
a-Si:H interface optimisation for thin film position sensitive detectors produced on polymeric substrates."
Journal of Non-Crystalline Solids. 299-302 (2002): 1289-1294.
AbstractIn this paper we present results concerning the optimisation of the electronic and mechanical properties presented by amorphous silicon (a-Si:H) thin films produced on polyimide (Kapton® VN) substrates with different thicknesses (25, 50 and 75 μm) by the plasma enhanced chemical vapour deposition (PECVD) technique. The purpose of this study is to obtain a low defect density as well as low residual stresses (specially at the interface) in order to provide good performances for large area (10 mm wide by 80 mm long) flexible position sensitive detectors. The electrical and optical properties presented by the films will be correlated to the sensor characteristics. The properties of samples have been measured by dark/photoconductivity, constant photocurrent measurements (CPM) and the results have been compared with films deposited on Corning 7059 glass substrates during the same run deposition. The residual stresses were measured using an active optical triangulation and angle resolved scattering. The preliminary results indicate that the thinner polymeric substrate with 25 μm presents the highest density of states, which is associated to the residual stresses and strains associated within the film. © 2002 Elsevier Science B.V. All rights reserved.
Martins, R., Ferreira Fortunato I. E. "
Growth model of gas species produced by the hot-wire and hot-wire plasma-assisted techniques."
Key Engineering Materials. 230-232 (2002): 603-606.
AbstractThe model presented is based on the heat transfer and energy balance equations that rule the set of physical and chemical interactions that take place on the gas phase of a growth process, assuming that the deposition process occurs under laminar dynamic flow conditions (Knudsen number below 1). In these conditions, the chemistry and physics of the process involved in the growth mechanism of silicon thin films produced by the hot wire or the hot-wire plasma assisted technique can be proper derived by balance equations that supply information about how the plasma density, the gas dilution and the gas temperature influence the growth mechanism and the equilibrium of the concentration of species presented on the growth surface. The model developed establishes a relation between the abundance species formed and the parameters initiators of the process such as the filament temperature and the rf power density used.
Fortunato, E., Nunes Marques Costa Águas Ferreira Costa Martins P. A. D. "
Highly conductive/transparent ZnO:Al thin films deposited at room temperature by rf magnetron sputtering."
Key Engineering Materials. 230-232 (2002): 571-574.
AbstractTransparent conducting ZnO:Al thin films have been deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by r.f. magnetron sputtering. The structural, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface. As deposited ZnO:Al thin films have an 85% transmittance in the visible and infra-red region and a resistivity as low as 3.6×10-2 Ωcm. The obtained results are comparable to those ones obtained on glass substrates, opening a new field for low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices.
Ferreira, I., Vilarinho Fernandes Fortunato Martins P. F. E. "
Influence of hydrogen gas dilution on the properties of silicon-doped thin films prepared by the hot-wire plasma-assisted technique."
Key Engineering Materials. 230-232 (2002): 591-594.
AbstractP- and n-type silicon thin films have been produced using a new hot wire plasma assisted deposition process that combines the conventional plasma enhanced chemical vapor deposition and the hot wire techniques. The films were produced in the presence of different hydrogen gas flow and their optoelectronic, structural and compositional properties have been studied. The optimized optoelectronic results achieved for n-type Si:H films are conductivity at room temperature of 9.4(Ωcm)-1 and optical band gap of 2eV while for p-type SiC:H films these values are 1 × 10-2(Ωcm)-1 and 1.6eV, respectively. The films exhibit the required optoelectronic characteristics and compactness for device applications such as solar cells.