Publications

Export 575 results:
Sort by: Author Title Type [ Year  (Desc)]
1998
Malik, A.a, Sêco Fortunato Martins Shabashkevich Piroszenko A. a E. a. "A new high ultraviolet sensitivity FTO-GaP Schottky photodiode fabricated by spray pyrolysis." Semiconductor Science and Technology. 13 (1998): 102-107. AbstractWebsite

A new high quantum efficiency gallium phosphide Schottky photodiode has been developed by spray deposition of heavily doped tin oxide films on n-type epitaxial structures, as an alternative to the conventional Schottky photodiodes using a semitransparent gold electrode. It is shown that fluorine-doped tin oxide films are more effective as transparent electrodes than tin-doped indium oxide films. The proposed photodiodes have a typical responsivity near 0.33 A W-1 at 440 nm and an unbiased internal quantum efficiency close to 100%, in the range from 250 to 450 nm. The model used to calculate the internal quantum efficiency (based on the optical constants of tin oxide films and gallium phosphide epitaxial layers) is found to be in good agreement with the experimental results. The data show that the quantum efficiency is strongly dependent on the thickness of the transparent electrode, owing to optical interference effects. The noise equivalent power for 440 nm is 2.7 × 10-15 W Hz-1/2, which indicates that these photodiodes can be used for accurate measurements in the short-wavelength range, even in the presence of stronger infrared background radiation.

Fortunato, E., Martins R. "New materials for large-area position-sensitive detectors." Sensors and Actuators, A: Physical. 68 (1998): 244-248. AbstractWebsite

Large-area thin-film position-sensitive detectors (TFPSDs) using the hydrogenated amorphous silicon (a-Si:H) technology are presented. The detection accuracy of these devices (lengths of about 80 mm) is better than ±0.5% of the value of the full scale of the sensor, the spatial resolution is better than ±20 μm, the non-linearities measured are below ±2% and the frequency response is in the range of a few kilohertz, compatible with the sampling frequency of most electromechanical assembling/control systems. The obtained results are quite promising regarding the application of these sensors to a wide variety of optical inspection systems. © 1998 Elsevier Science S.A. All rights reserved.

Fortunato, Elvira, Martins Rodrigo. "New materials for large-area position-sensitive detectors." Sensors and Actuators, A: Physical. 68 (1998): 244-248. AbstractWebsite

Large-area thin-film position-sensitive detectors (TFPSDs) using the hydrogenated amorphous silicon (a-Si:H) technology are presented. The detection accuracy of these devices (lengths of about 80 mm) is better than ±0.5% of the value of the full scale of the sensor, the spatial resolution is better than ±20 μm, the non-linearities measured are below ±2% and the frequency response is in the range of a few kilohertz, compatible with the sampling frequency of most electromechanical assembling/control systems. The obtained results are quite promising regarding the application of these sensors to a wide variety of optical inspection systems.

Malik, A.a, Sêco Fortunato Martins A. b E. a. "New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide." Sensors and Actuators, A: Physical. 67 (1998): 68-71. AbstractWebsite

UV-enhanced monocrystalline zinc sulphide optical sensors with high quantum efficiency have been developed by spray deposition of heavy fluorine-doped tin oxide (FTO) thin films onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced high-efficiency silicon photodetectors commonly used in precise radiometric and spectroscopic measurements as well as to new sensors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that is nearly 100% from 250 to 320 nm, and the typical sensitivity at 250 nm is 0.15 A W-1. The sensors are insensitive to solar radiation in conditions on the earth and can be used as solar blind photodetectors for precision UV measurements under direct solar illumination for both terrestrial and space applications. © 1998 Elsevier Science S.A. All rights reserved.

Malik, A., Seco Fortunate Martins A. E. R. "New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide." Sensors and Actuators, A: Physical. 67 (1998): 68-71. AbstractWebsite

UV-enhanced monocrystalline zinc sulphide optical sensors with high quantum efficiency have been developed by spray deposition of heavy fluorine-doped tin oxide (FTO) thin films onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced high-efficiency silicon photodetectors commonly used in precise radiometric and spectroscopic measurements as well as to new sensors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that is nearly 100% from 250 to 320 nm, and the typical sensitivity at 250 nm is 0.15 A W-1. The sensors are insensitive to solar radiation in conditions on the earth and can be used as solar blind photodetectors for precision UV measurements under direct solar illumination for both terrestrial and space applications.

Fortunato, Elvira, Malik Alexander Martins Rodrigo. "Photochemical sensors based on amorphous silicon thin films." Sensors and Actuators, B: Chemical. B46 (1998): 202-207. AbstractWebsite

Hydrogenated amorphous silicon photochemical sensors based on Pd metal/insulator/semiconductor (Pd-MIS) structures were produced by plasma enhanced chemical vapour deposition (PECVD) with two different oxidized surfaces (thermal and chemical oxidation). The behaviour of dark and illuminated current-voltage characteristics in air and in the presence of a hydrogen atmosphere is explained by the changes induced by the gases adsorbed, in the work function of the metal, modifying the electrical properties of the interface. The photochemical sensors produced present more than two orders of magnitude variation on the reverse dark current in the presence of 400 ppm hydrogen. When the sensors are submitted to light it corresponds a decrease of 45% on the open circuit voltage.

Martins, R., Ferreira Fernandes Fortunato I. F. E. "Role of the deposition conditions on the properties presented by nanocrystallite silicon films produced by hot wire." Journal of Non-Crystalline Solids. 227-230 (1998): 901-905. AbstractWebsite

The aim of this work is to study the role of hydrogen dilution and filament temperature on the properties of nanocrystalline silicon thin films (undoped and doped) produced by the hot wire technique. These deposition parameters are correlated to the film's structure, composition and electro-optical properties with special emphasis on boron doped nanocrystalline silicon carbide reported here. © 1998 Elsevier Science B.V. All rights reserved.

Malik, A.a, Sêco Fortunato Martins A. b E. c. "Selective optical sensors from 0.25 to 1.1 μm based on metal oxide-semiconductor heterojunctions." Sensors and Actuators, A: Physical. 68 (1998): 333-337. AbstractWebsite

We present a set of high-efficiency optical sensors for the spectral range from 0.25 to 1.1 μm based on metal oxide-semiconductor heterostructures using different substrates: GaP, GaSe, AlxGa1 - xAs, GaAs and Si. A set of several transparent conductive metal oxide films such as indium, tin and zinc oxides fabricated by the spray pyrolysis method and its doping procedure has been investigated. The results show that heavily doped indium and tin oxide films are preferable as the active transparent conductive electrode in heterojunction surface-barrier structures. The fabricated sensors exhibit several features such as process simplicity, high quantum efficiency, uniformity of sensitivity over the active area and a high response speed. Such sensors can be used for precision measurements in different scientific and technical applications. © 1998 Elsevier Science S.A. All rights reserved.

Malik, Alexander, Seco Ana Fortunato Elvira Martins Rodrigo. "Selective optical sensors from 0.25 to 1.1 μm based on metal oxide-semiconductor heterojunctions." Sensors and Actuators, A: Physical. 68 (1998): 333-337. AbstractWebsite

We present a set of high-efficiency optical sensors for the spectral range from 0.25 to 1.1 μm based on metal oxide-semiconductor heterostructures using different substrates: GaP, GaSe, AlxGa1-xAs, GaAs and Si. A set of several transparent conductive metal oxide films such as indium, tin and zinc oxides fabricated by the spray pyrolysis method and its doping procedure has been investigated. The results show that heavily doped indium and tin oxide films are preferable as the active transparent conductive electrode in heterojunction surface-barrier structures. The fabricated sensors exhibit several features such as process simplicity, high quantum efficiency, uniformity of sensitivity over the active area and a high response speed. Such sensors can be used for precision measurements in different scientific and technical applications.

Malik, A., Martins R. "Silicon active optical sensors: From functional photodetectors to smart sensors." Sensors and Actuators, A: Physical. 68 (1998): 359-364. AbstractWebsite

We have developed new types of functional and smart optical silicon sensors, based on ITO/multichannel insulator/silicon structures, which are able to execute electronic functions such as amplifying the photocurrent (without avalanche multiplication), transforming the input optical signal into a radio frequency output signal and transforming the analogue input optical signal to a digital output form, without external active electronic components. These new functional optical sensors allow a substantial simplification of the registration of optical signals as well as of the electronic scheme to be used. © 1998 Elsevier Science S.A. All rights reserved.

Malik, Alexander, Martins Rodrigo. "Silicon active optical sensors: from functional photodetectors to smart sensors." Sensors and Actuators, A: Physical. 68 (1998): 359-364. AbstractWebsite

We have developed new types of functional and smart optical silicon sensors, based on ITO/multichannel insulator/silicon structures, which are able to execute electronic functions such as amplifying the photocurrent (without avalanche multiplication), transforming the input optical signal into a radio frequency output signal and transforming the analogue input optical signal to a digital output form, without external active electronic components. These new functional optical sensors allow as substantial simplification of the registration of optical signals as well as of the electronic scheme to be used.

Fortunato, E., Soares Lavareda Martins F. G. R. "Thin films applied to integrated optical position-sensitive detectors." Thin Solid Films. 317 (1998): 421-424. AbstractWebsite

We have developed a linear thin film position-sensitive detector with 128 elements, based on p.i.n. a-Si:H devices. The incorporation of this sensor into an optical inspection camera makes possible the acquisition of three-dimensional information of an object, using laser triangulation methods. The main advantages of this system, when compared with the conventional charge-coupled devices, are the low complexity of hardware and software used, and that the information can be continuously processed (analogic detection). In this paper, we present the most significant characteristics of the singular one-dimensional thin film position-sensitive detectors that form part of the linear array with 128 sensors. © 1998 Elsevier Science S.A.

Fortunato, E., Malik Martins A. R. "Thin oxide interface layers in a-Si:H MIS structures." Journal of Non-Crystalline Solids. 227-230 (1998): 1230-1234. AbstractWebsite

Pd-metal/insulator/semiconductor based on hydrogenated amorphous silicon were produced by plasma enhanced chemical vapour deposition with two different oxidised surfaces: thermal in ambient air and chemical with hydrogen peroxide. The diode characteristics have been investigated using dark and light current as f(v) measurements in the temperature range from 300 K to 380 K, from which it was possible to infer the electron barrier height. The data obtained show that the incorporation of a thin insulator layer between the semiconductor and the metal improves the performances of the devices by preventing the formation of suicides at the interface. Apart from that we also show that the MIS structures with the thermal oxide presents 'better' performances than the ones with the chemical oxide due to the type of interface states and of the oxide charges associated with the interface between the insulator and the semiconductor. © 1998 Elsevier Science B.V. All rights reserved.

Ferreira, I., Carvalho Martins J. R. "Undoped and doped crystalline silicon films obtained by Nd-YAG laser." Thin Solid Films. 317 (1998): 140-143. AbstractWebsite

In this paper, we present results of the role of laser beam energy and shot density on the electro-optical and structural properties of undoped and doped recrystallized amorphous silicon thin films, generated by pulsed Nd-YAG laser (λ = 532 nm). The data reveal that the structure and electrical characteristics of the recrystallized thin films are mainly dependent on the energy and shot density of the laser beam, while the morphology of the obtained films are mainly governed by the number of shots used. The data also show that the electrical conductivity of undoped and doped recrystallized films can be varied up to 6 orders of magnitude, by the proper choice of the recrystallization conditions. Doped samples with conductivities in the amorphous states in the range of 10-5 Ω-1 cm-1 present, after recrystallization, conductivities of about 300 Ω-1 cm-1. The SEM micro-chemical analysis also shows that the obtained crystalline grains are constituted by pure silicon. © 1998 Elsevier Science S.A.

1997
Topič, M.a, Smole Furlan Fortunato Martins F. a J. a. "Analysis of front contact heterojunction in a-Si:H one-dimensional position sensitive detectors." Review of Scientific Instruments. 68 (1997): 1377-1381. AbstractWebsite

The influence of different transparent conducting oxides (TCO) on the transverse photoelectrical properties of one-dimensional position sensitive detectors based on p-i-n amorphous silicon structures was studied. For both SnO 2 and indium tin oxide, poor quality of the p layer was revealed by secondary ion mass spectroscopy measurements. Good agreement between experimental and simulation characteristics of TCO/p-i-n structure was additionally conditioned by a strong increase in defect states at the p layer surface which can be attributed to the reduction/ oxidation process at the TCO/p interface. However, the analysis showed that under reverse bias the spectral response of the p-i-n structure is not significantly affected by different TCO layers and conditions at the TCO/p heterojunction. Nevertheless, indium tin oxide is less appropriate for a front TCO layer due to the poor reverse dark current-voltage characteristic, i.e., higher leakage current component leading to lower signal to noise ratio. © 1997 American Institute of Physics.

Fantoni, A., Vieira Martins M. R. "Bidimensional numerical analysis of a μc-Si:H P-I-N photodiode under local illumination." Materials Research Society Symposium - Proceedings. Vol. 467. 1997. 765-770. Abstract

The behaviour of a microcrystalline p-i-n junction locally illuminated with monochromatic radiation (incident power of 50 mW/cm2) is analysed by means of numerical experiences. The model used for the two-dimensional analysis of the transport properties of a μc-Si:H p-i-n photo-detector is based on the simultaneous solution of the continuity equations for holes and electrons together with the Poisson's equation. The solution is found on a rectangular domain, taking into account the dimension perpendicular to the junction plane and one on the parallel plane. The lateral effects occurring within the structure, due to the non-uniformity of the illumination, are outlined. The results we present show that the potential profile has a linear variation from the illuminated to the dark neutral region. The lateral components of the electric field and of the current density vectors reveal to be mainly localised inside the doped layers.

Martins, R., Bicho Lavareda Fortunato A. G. E. "Dependence of amorphous silicon solar cell performances on the lateral drift current." Solar Energy Materials and Solar Cells. 45 (1997): 1-15. AbstractWebsite

The aim of this work is to present a model able to explain the role of the lateral drift current on the experimental behaviour exhibited by p-i-n amorphous silicon solar cells (J-V characteristics, responsivity and the apparent device degradation behaviour), when the ratio between the covered and uncovered metal collected areas of the device is higher than one or recrystallization occurs in the edges of the p-i-n junction.

Fortunato, E., Malik Seco Macarico Martins A. A. A. "High sensitivity photochemical sensors based on amorphous silicon." Materials Research Society Symposium - Proceedings. Vol. 467. 1997. 949-954. Abstract

Hydrogenated amorphous silicon photochemical sensors based on Pd-MIS structures were produced by Plasma Enhanced Chemical Vapor Deposition with two different oxidized surfaces (thermal and chemical oxidation). The behaviour of dark and illuminated current-voltage characteristics in air and in the presence of a hydrogen atmosphere is explained by the changes induced by the gases in the work function of the metal, modifying the electrical properties of the interface. The photochemical sensors produced present more than 2 orders of magnitude variation on the reverse dark current when in presence of 400 ppm hydrogen to which it corresponds a decrease of 45% on the open circuit voltage.

Martins, R., Maçarico Ferreira Nunes Bicho Fortunato A. I. R. "Highly conductive and highly transparent n-type microcrystalline silicon thin films." Thin Solid Films. 303 (1997): 47-52. AbstractWebsite

The aim of this paper is to present data on the dependence of the electro-optical characteristics and structure of n-type microcrystalline silicon films on the r.f. power used during the deposition of films produced by the plasma-enhanced chemical vapour deposition technique. The interest of these films arise from the fact that they combine some electro-optical advantages of amorphous (wide optical gap) and crystalline materials (electronic behaviour), highly interesting in the production of a wide variety of optoelectronic devices such as solar cells and thin film transistors. In this paper, microcrystalline n-type films presenting simultaneously optical gaps of about 2.3 eV, dark conductivity of 6.5 S cm-1 and Hall mobility of about 0.86 cm2 V-1 s-1 will be reported, the highest combined values for n-type microcrystalline silicon films, as far as we know. © 1997 Elsevier Science S.A.

Fantoni, A., Vieira Cruz Martins M. J. R. "Modelling a μc-Si:H p-i-n device under non-uniform illumination." Thin Solid Films. 296 (1997): 110-113. AbstractWebsite

Microcrystalline p-i-n silicon devices are a prospective contender for application in large-area optoelectronics. In this paper we analyse the behaviour of a μc-Si:H p-i-n photodevice under non-uniform illumination. The effect of a spatially non-uniform illumination is to create lateral electric fields and current flows inside the structure. We present in this paper a numerical application of a complete bidimensional model describing the transport properties within the structure. The continuity equations forholes and electrons together with Poisson's equation are solved simultaneously along the two directions parallel and perpendicular to the junction. The results of simulating p-i-n μc-Si:H junctions under non-uniform illumination show that the generated lateral effects depend not only in intensity but also in direction on the wavelength of the incident radiation. © 1997 Elsevier Science S.A.

Fantoni, A., Vieira Cruz Martins M. J. R. "Numerical simulation of a/μc-Si:H p-i-n photo-diode under non-uniform illumination: A 2D transport problem." Proceedings of SPIE - The International Society for Optical Engineering. Vol. 2997. 1997. 234-243. Abstract

We report here about a computer simulation program, based on a comprehensive physical and numerical model of an a/μc-Si:H p-i-n device, applied to the 2D problem of describing the transport properties within the structure under non- uniform illumination. The continuity equations for holes and electrons together with Poisson's equation are solved simultaneously along the two directions parallel and perpendicular to the junction. The basic semiconductor equations are implemented with a recombination mechanism reflecting the microcrystalline structure of the different layers. The lateral effects occurring within the structure, due to the non-uniformity of the radiation are outlined. The simulation results obtained for different wavelengths of the incident light are compared and shown their dependence on the energy of the radiation. The results of simulating a p-i-n μc-Si:H junctions under non-uniform illumination is that the generated lateral effects depend not only in intensity but also in direction on the wavelength of the incident radiation. ©2004 Copyright SPIE - The International Society for Optical Engineering.

Martins, R., Maçarico Ferreira Fidalgo Fortunato A. I. J. "Role of the deposition parameters in the uniformity of films produced by the plasma-enhanced chemical vapour deposition technique." Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties. 76 (1997): 259-272. AbstractWebsite

The objective of this work is to present an analytical model able to interpret the experimental dependence of the uniformity of films produced by the plasma-enhanced chemical vapour deposition technique on the deposition parameters (discharge pressure, gas flow temperature and rf power density). The model proposed is based on the Navier-Stokes equations applied to a gas flow considered to be quasi-incompressible and quasi-inviscous, whenever the Mach number is below 0·3. This condition leads to the establishment of the proper quasisteady-state gas flow equations, and the corresponding equations of energy and momentum balance ascribed to the mass profile of the species formed, under the presence of a low-rf-power plasma density, are able to predict the uniformity distribution of the film over the entire deposited substrate area.

Martins, R., Macarico Ferreira Fortunato A. I. E. "Role of the gas flow parameters on the uniformity of films produced by PECVD technique." Materials Research Society Symposium - Proceedings. Vol. 467. 1997. 609-614. Abstract

The aim of this work is to present an analytical model able to interpret the experimental data of the dependence of film's uniformity on the discharge pressure, gas flow and temperature used during the production of thin films by the plasma enhancement chemical vapour deposition technique, under optimised electrode's geometry and electric field distribution. To do so, the gas flow is considered to be quasi-incompressible and inviscous leading to the establishment of the electro-fluid-mechanics equations able to interpret the film's uniformity over the substrate area, when the discharge process takes place in the low power regime.

Malik, A., Seco Nunes Vieira Fortunato Martins A. R. M. "Spray-deposited metal oxide films with various properties for micro- and optoelectronic applications: Growth and characterization." Materials Research Society Symposium - Proceedings. Vol. 471. 1997. 47-52. Abstract

This work reports the structure and electro-optical characteristics of different metal oxide films obtained by spray pyrolysis on heated glass substrates, aiming their application in optoelectronic devices. The results show that this technique leads to thin films with properties ranging from dielectric to degenerate semiconductors, offering the following advantages: simplicity, low cost, high productivity and the possibility of covering large areas, highly important for large area device applications.

Martins, R., Maçarico Vieira Ferreira Fortunato A. M. I. "Structure, composition and electro-optical properties of n-type amorphous and microcrystalline silicon thin films." Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties. 76 (1997): 249-258. AbstractWebsite

This paper deals with the structure, composition and electro-optical characteristics of n-type amorphous and microcrystalline silicon thin films produced by plasma-enhanced chemical vapour deposition in a hydrogenhelium mixture. In addition, special emphasis is given to the role that hydrogen incorporation plays in the film's properties and in the characteristics of n-type microcrystalline films presenting simultaneously optical gaps of about 2·3 eV (controlled by the hydrogen content in the film), a dark conductivity of 6-5S cm-1 and a Hall mobility of about 0·86 cm2 V-1 s-1, the highest combined values for n-type microcrystalline silicon films, as far as we know.