Publications

Export 575 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
F
Fortunato, E.M.C., Barquinha Pimentel Gonçalves Marques Pereira Martins P. M. C. A. "Fully transparent ZnO thin-film transistor produced at room temperature." Advanced Materials. 17 (2005): 590-594. AbstractWebsite

The possibility of fabricating high-mobility ZnO thin-film transistors (ZnO-TFT) at room temperature by rf magnetron sputtering was discussed. It was found that the films were nanocrystalline with a hexagonal structure and exhibited a preferred orientation with the c-axis perpendicular to the substrate. The undoped ZnO films exhibited improved crystallinity fraction of the nanocrystals and low oxygen vacancies. Analysis shows that the exposure of the ZnO-TFTs to the ambient light has no effect on the current voltage characteristics.

G
Fortunato, E., Gonçalves Marques Assunção Ferreira Águas Pereira Martins A. A. V. "Gallium zinc oxide coated polymeric substrates for optoelectronic applications." Materials Research Society Symposium - Proceedings. Vol. 769. 2003. 291-296. Abstract

Highly transparent and conductive ZnO:Ga thin films were produced by rf magnetron sputtering at room temperature on polyethylene naphthalate substrates. The films present a good electrical and optical stability, surface uniformity and a very good adhesion to the polymeric substrates. The lowest resistivity obtained was 5×10-4 Ωcm with a sheet resistance of 15 Ω/sqr and an average optical transmittance in the visible part of the spectra of 80%. It was also shown that by passivating the polymeric surface with a thin SiO2 layer, the electrical and structural properties of the films are improved nearly by a factor of 2.

Barquinha, P.a, Vila Gonçalves Pereira Martins Morante Fortunato A. M. b G. "Gallium-indium-zinc-oxide-based thin-film transistors: Influence of the source/drain material." IEEE Transactions on Electron Devices. 55 (2008): 954-960. AbstractWebsite

During the last years, oxide semiconductors have shown that they will have a key role in the future of electronics. In fact, several research groups have already presented working devices with remarkable electrical and optical properties based on these materials, mainly thin-film transistors (TFTs). Most of these TFTs use indium-tin oxide (ITO) as the material for source/drain electrodes. This paper focuses on the investigation of different materials to replace ITO in inverted-staggered TFTs based on gallium-indium-zinc oxide (GIZO) semiconductor. The analyzed electrode materials were indium-zinc oxide, Ti, Al, Mo, and Ti/Au, with each of these materials used in two different kinds of devices: one was annealed after GIZO channel deposition but prior to source/drain deposition, and the other was annealed at the end of device production. The results show an improvement on the electrical properties when the annealing is performed at the end (for instance, with Ti/Au electrodes, mobility rises from 19 to 25 cm2/V · s, and turn-on voltage drops from 4 to 2 V). Using time-of-flight secondary ion mass spectrometry (TOF-SIMS), we could confirm that some diffusion exists in the source/drain electrodes/ semiconductor interface, which is in close agreement with the obtained electrical properties. In addition to TOF-SIMS results for relevant elements, electrical characterization is presented for each kind of device, including the extraction of source/drain series resistances and TFT intrinsic parameters, such as VTi (intrinsic threshold voltage). © 2008 IEEE.

Lopes, M.E.a, Gomes Medeiros Barquinha Pereira Fortunato Martins Ferreira H. L. a M. "Gate-bias stress in amorphous oxide semiconductors thin-film transistors." Applied Physics Letters. 95 (2009). AbstractWebsite

A quantitative study of the dynamics of threshold-voltage shifts with time in gallium-indium zinc oxide amorphous thin-film transistors is presented using standard analysis based on the stretched exponential relaxation. For devices using thermal silicon oxide as gate dielectric, the relaxation time is 3× 105 s at room temperature with activation energy of 0.68 eV. These transistors approach the stability of the amorphous silicon transistors. The threshold voltage shift is faster after water vapor exposure suggesting that the origin of this instability is charge trapping at residual-water-related trap sites. © 2009 American Institute of Physics.

deZeaBermudez Alves, R.D.a, Rodrigues Andrade Fernandes Pinto Pereira Pawlicka Martins Fortunato Silva L. C. a J. "GelatinnZn(CF3SO3)2 polymer electrolytes for electrochromic devices." Electroanalysis. 25 (2013): 1483-1490. AbstractWebsite

The present work is focused on gelatin-based electrolytes doped with a range of concentration of zinc triflate (Zn(CF3SO3)2). The transparent-thin-film samples have been represented by the notation GelatinnZn(CF3SO3)2, where n represents the zinc triflate salt concentration in the electrolyte membranes from 0.00 wt% to 10.93 wt% The samples have been characterized by conductivity measurements, thermal analysis, cyclic voltammetry, X-ray diffraction (XRD), polarized optical microscopy (POM) and scanning electron microscopy (SEM). The gelatin-based electrolytes were also tested as ionic conductors in electrochromic devices with the glass/ITO/WO3/gelatin-based electrolyte/CeO2-TiO2/ITO/glass configuration. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Veigas, B.a b, Jacob Costa Santos Viveiros Inácio Martins Barquinha Fortunato Baptista J. M. b M. "Gold on paper-paper platform for Au-nanoprobe TB detection." Lab on a Chip - Miniaturisation for Chemistry and Biology. 12 (2012): 4802-4808. AbstractWebsite

Tuberculosis (TB) remains one of the most serious infectious diseases in the world and the rate of new cases continues to increase. The development of cheap and simple methodologies capable of identifying TB causing agents belonging to the Mycobacterium tuberculosis Complex (MTBC), at point-of-need, in particular in resource-poor countries where the main TB epidemics are observed, is of paramount relevance for the timely and effective diagnosis and management of patients. TB molecular diagnostics, aimed at reducing the time of laboratory diagnostics from weeks to days, still require specialised technical personnel and labour intensive methods. Recent nanotechnology-based systems have been proposed to circumvent these limitations. Here, we report on a paper-based platform capable of integrating a previously developed Au-nanoprobe based MTBC detection assay - we call it "Gold on Paper". The Au-nanoprobe assay is processed and developed on a wax-printed microplate paper platform, allowing unequivocal identification of MTBC members and can be performed without specialised laboratory equipment. Upon integration of this Au-nanoprobe colorimetric assay onto the 384-microplate, differential colour scrutiny may be captured and analysed with a generic "smartphone" device. This strategy uses the mobile device to digitalise the intensity of the colour associated with each colorimetric assay, perform a Red Green Blue (RGB) analysis and transfer relevant information to an off-site lab, thus allowing for efficient diagnostics. Integration of the GPS location metadata of every test image may add a new dimension of information, allowing for real-time epidemiologic data on MTBC identification. © 2012 The Royal Society of Chemistry.

Martins, R., Ferreira Fortunato I. E. "Growth model of gas species produced by the hot-wire and hot-wire plasma-assisted techniques." Key Engineering Materials. 230-232 (2002): 603-606. AbstractWebsite

The model presented is based on the heat transfer and energy balance equations that rule the set of physical and chemical interactions that take place on the gas phase of a growth process, assuming that the deposition process occurs under laminar dynamic flow conditions (Knudsen number below 1). In these conditions, the chemistry and physics of the process involved in the growth mechanism of silicon thin films produced by the hot wire or the hot-wire plasma assisted technique can be proper derived by balance equations that supply information about how the plasma density, the gas dilution and the gas temperature influence the growth mechanism and the equilibrium of the concentration of species presented on the growth surface. The model developed establishes a relation between the abundance species formed and the parameters initiators of the process such as the filament temperature and the rf power density used.

Raniero, L.a, Martins Águas Zang Ferreira Pereira Fortunato Boufendi R. a H. a. "Growth of polymorphous/nanocrystalline silicon films deposited by PECVD at 13.56 MHz." Materials Science Forum. 455-456 (2004): 532-535. AbstractWebsite

This paper aims to characterize the growth process of polymorphous/ nanocrystalline silicon (pm-Si:H) films produced by PECVD at 13.56 MHz. The emphasis is in determining the plasma parameters that allow to control the conditions where pm/nc-Si:H can be obtained under high hydrogen dilution, where the only varied parameter is the silane gas flow, fixing rf power, deposition pressure and substrate temperature. The data achieved show that good pm/nc-Si:H films are produced at 240 Pa using a silane gas flow of 5sccm (dilution 1:70) to which it corresponds films with photosensitivities exceeding 106, optical gaps close to 1.80 eV and 18 at% hydrogen contents. The data also show that under certain deposition conditions the pm-Si:H films peel-off.

Fortunato, E., Gonçalves Assunção Marques Águas Pereira Ferreira Martins A. V. A. "Growth of ZnO:Ga thin films at room temperature on polymeric substrates: Thickness dependence." Thin Solid Films. 442 (2003): 121-126. AbstractWebsite

In this paper, we present results concerning the thickness dependence (from 70 to 890 nm) of electrical, structural, morphological and optical properties presented by gallium-doped zinc oxide (GZO) deposited on polyethylene naphthalate (PEN) substrates by r.f. magnetron sputtering at room temperature. For thicknesses higher than 300 nm an independent correlation between the electrical, morphological, structural and optical properties are observed. The lowest resistivity obtained was 5 × 10-4 Ω cm with a sheet resistance of 15 Ω/□ and an average optical transmittance in the visible part of the spectra of 80%. It is also shown that by passivating the surface of the polymer by depositing a thin silicon dioxide layer the electrical and structural properties of the films are improved nearly by a factor of two. © 2003 Elsevier B.V. All rights reserved.

H
c Xu, Y.a, Hu Diao Cai Zhang Zeng Hao Liao Fortunato Martins Z. b H. a. "Heterojunction solar cells with n-type nanocrystalline silicon emitters on p-type c-Si wafers." Journal of Non-Crystalline Solids. 352 (2006): 1972-1975. AbstractWebsite

Hydrogenated nanocrystalline silicon (nc-Si:H) n-layers have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) wafers. The nc-Si:H n-layers were deposited by radio-frequency (RF) plasma enhanced chemical vapor deposition (PECVD), and characterized using Raman spectroscopy, optical transmittance and activation energy of dark-conductivity. The nc-Si:H n-layers obtained comprise fine grained nanocrystallites embedded in amorphous matrix, which have a wider bandgap and a smaller activation energy. Heterojunction solar cells incorporated with the nc-Si n-layer were fabricated using configuration of Ag (100 nm)/lT0 (80 nm)/n-nc-Si:H (15 nm)/buffer a-Si:H/p-c-Si (300 μm)/Al (200 nm), where a very thin intrinsic a-Si:H buffer layer was used to passivate the p-c-Si surface, followed by a hydrogen plasma treatment prior to the deposition of the thin nanocrystalline layer. The results show that heterojunction solar cells subjected to these surface treatments exhibit a remarkable increase in the efficiency, up to 14.1% on an area of 2.43 cm2. © 2006 Elsevier B.V. All rights reserved.

Fortunato, E., Pimentel Pereira Gonçalves Lavareda Águas Ferreira Carvalho Martins A. L. A. "High field-effect mobility zinc oxide thin film transistors produced at room temperature." Journal of Non-Crystalline Solids. 338-340 (2004): 806-809. AbstractWebsite

In this paper we present the first results of thin film transistors produced completely at room temperature using ZnO as the active channel and silicon oxynitride as the gate dielectric. The ZnO-based thin film transistors (ZnO-TFT) present an average optical transmission (including the glass substrate) of 84% in the visible part of the spectrum. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 1.8 V. A field effect mobility of 70 cm2/Vs, a gate voltage swing of 0.68 V/decade and an on-off ratio of 5×105 were obtained. The combination of transparency, high field-effect mobility and room temperature processing makes the ZnO-TFT very promising for the next generation of invisible and flexible electronics. © 2004 Elsevier B.V. All rights reserved.

Pereira, L.a, Barquinha Fortunato Martins Kang Kim Lim Song Park P. a E. a. "High k dielectrics for low temperature electronics." Thin Solid Films. 516 (2008): 1544-1548. AbstractWebsite

In this work the electrical and structural properties of two high k materials as hafnium oxide (HfO2) and tantalum oxide (Ta2O5) produced at room temperature are exploited. Aiming low temperature processing two techniques were employed: r.f. sputtering and electron beam evaporation. The sputtered HfO2 films present a nanocrystalline structure when deposited at room temperature. The same does not happen for the evaporated films, which are essentially amorphous. The density and the electrical performance of both sputtered and evaporated films are improved after annealing them at 200 °C. On the other hand, the Ta2O5 samples deposited at room temperature are always amorphous, independently of the technique used. The density and electrical performance are not so sensitive to the annealing process. The set of data obtained show that these dielectrics processed at temperatures below 200 °C present promising properties aiming to produce devices at low temperature with improved interface properties and reduced leakage currents. © 2007 Elsevier B.V. All rights reserved.

Goņalves, G.a, Barquinha Pereira Franco Alves Martins Fortunato P. a L. b. "High mobility a-IGO films produced at room temperature and their application in TFTs." Electrochemical and Solid-State Letters. 13 (2009): H20-H22. AbstractWebsite

The effect of oxygen partial pressure on the properties of In2 O3 - Ga2 O3 thin films produced by sputtering at room temperature aimed at thin film transistor (TFT) application is reported in this work. When produced in the absence of oxygen, the films are polycrystalline, while in the presence of oxygen, the films are amorphous. The films' resistivity is tuned between 10-3 and 104 γ cm. Moreover, the films present a high transmittance (> 80%) and a smooth surface (rrms =1.2 nm). The high performance as-produced transistors present high saturation mobility (μsat ≈43 cm2 /V s) and a subthreshold gate-voltage swing of 0.51 V/dec, which is reduced to 0.27 V/dec after 150°C annealing. © 2009 The Electrochemical Society.

Fortunato, E., Pimentel Gonçalves Marques Martins A. A. A. "High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature." Thin Solid Films. 502 (2006): 104-107. AbstractWebsite

In this paper we present results of indium zinc oxide deposited at room temperature by rf magnetron sputtering, with an electron mobility as high as 60 cm2/Vs. The films present a resistivity as low as 5 × 10 - 4 Ω cm with an optical transmittance of 85%. The structure of these films seems to be polymorphous (mix of different amorphous and nanocrystalline phases from different origins) as detected from XRD patterns with a smooth surface and from SEM micrographs, is highly important to ensure a long lifetime when used in display devices. © 2005 Elsevier B.V. All rights reserved.

Fortunato, E., Barquinha Gonçalves Pereira Martins P. G. L. "High mobility and low threshold voltage transparent thin film transistors based on amorphous indium zinc oxide semiconductors." Solid-State Electronics. 52 (2008): 443-448. AbstractWebsite

Staggered bottom gate transparent thin film transistors (TTFTs) have been produced by rf magnetron sputtering at room temperature, using amorphous indium zinc oxide (IZO) semiconductor, for the channel as well as for the drain and source regions. The obtained TTFTs operate in the enhancement mode with threshold voltages of 2.4 V, saturation mobility of 22.7 cm2/V s, gate voltage swing of 0.44 V/dec and an ON/OFF current ratio of 7 × 107. The high performances presented by these TTFTs produced at room temperature, make these TFTs a promising candidate for flexible, wearable, disposable portable electronics as well as battery-powered applications. © 2007 Elsevier Ltd. All rights reserved.

c Parthiban, S.a b, Gokulakrishnan Elangovan Gonçalves Ramamurthi Fortunato Martins V. a E. b. "High mobility and visible-near infrared transparent titanium doped indium oxide thin films produced by spray pyrolysis." Thin Solid Films. 524 (2012): 268-271. AbstractWebsite

This paper deals with high transparent and high conductive oxides based on polycrystalline titanium (Ti) doped (0.5-3 at.%) indium oxide (IO) thin films produced on glass substrates at 400 °C by spray pyrolysis technique. X-ray diffraction analysis confirmed the cubic bixbyite structure of indium oxide. A high mobility of ∼ 97 cm2 V- 1 s- 1, a carrier concentration of ∼ 1.55 × 1020 cm- 3 and a resistivity of ∼ 4.11 × 10- 4 Ω-cm with ∼ 83% of transmittance in the wavelength ranging between 400 and 2500 nm were obtained for 2 at.% Ti doping films, rivalling so to the best known transparent conducting oxide based on indium tin oxide. Moreover, the transmittance in the broad wavelength ranging between 400 and 2500 nm is over 83%, leading so to an increasing carrier generation towards the near infrared region of the spectrum, as required for applications such as solar cells. We also notice that increasing the doping concentration widened the optical band gap and caused a small Burstein-Moss shift, due to mobility decrease, as expected. © 2012 Published by Elsevier B.V.

Fortunato, E.a, Pereira Barquinha Botelho Do Rego Gongalves Vilà Morante Martins L. a P. a. "High mobility indium free amorphous oxide based thin film transistors." Proceedings of International Meeting on Information Display. Vol. 8. 2008. 1199-1202. Abstract

High mobility bottom gate thin film transistors (TFTs) with an amorphous gallium tin zinc oxide (a-GSZO) channel layer have been produced by rf magnetron cosputtering using a gallium zinc oxide (GZO) and tin (Sn) targets. The effect of the post annealing temperatures (200 °C, 250 °C and 300 °C) was evaluated and compared with two series of TFTs produced at room temperature and 150 °C during the channel deposition. From the results it was observed that the effect ofpos annealing is crucial for both series of TFTs either for stability as well as for improving the electrical characteristics. The a-GSZO TFTs operate in the enhancement mode (n-type), present a high saturation mobility of 24.6 cm2/Vs, a subthreshold gate swing voltage of 0.38 V/decade, a turn-on voltage of -0.5 V, a threshold voltage of 4.6 V and an ION/IOFF ratio of 8x107, satisfying all the requirements to be used in active-matrix backplane.

Fortunato, E.M.C.a, Pereira Barquinha Botelho Do Rego Goņalves Vil̀ Morante Martins L. M. N. a. "High mobility indium free amorphous oxide thin film transistors." Applied Physics Letters. 92 (2008). AbstractWebsite

High mobility bottom gate thin film transistors (TFTs) with an amorphous gallium tin zinc oxide (a-GSZO) channel layer have been produced by rf magnetron cosputtering using a gallium zinc oxide (GZO) and tin (Sn) targets. The effect of postannealing temperatures (200, 250, and 300 °C) was evaluated and compared with two series of TFTs produced at room temperature (S1) and 150 °C (S2) during the channel deposition. From the results, it was observed that the effect of postannealing is crucial for both series of TFTs either for stability as well as for improving the electrical characteristics. The a-GSZO TFTs (WL=5050 μm) operate in the enhancement mode (n -type), present a high saturation mobility of 24.6 cm2 V s, a subthreshold gate swing voltage of 0.38 V /decade, a turn-on voltage of -0.5 V, a threshold voltage of 4.6 V, and an Ion Ioff ratio of 8× 107, satisfying all the requirements to be used as active-matrix backplane. © 2008 American Institute of Physics.

Fortunato, E., Pimentel Gonçalves Marques Martins A. A. A. "High mobility nanocrystalline indium zinc oxide deposited at room temperature." Materials Research Society Symposium Proceedings. Vol. 811. 2004. 437-442. Abstract

In this paper we present results of indium doped zinc oxide deposited at room temperature by rf magnetron sputtering, with electron mobility as high as 60 cm2/Vs. The films present a resistivity as low as 5×10 -4 Ωcm with an optical transmittance of 85%. The structure of these films look-like polymorphous (mixed of different amorphous and nanocrystalline phases from different origins) as detected from XRD patterns (no clear peak exists) with a high smooth surface, as detected from SEM micrographs, highly important to ensure long life time when used in display devices.

Parthiban, S.a, Elangovan Ramamurthi Martins Fortunato E. b K. a. "High near-infrared transparency and carrier mobility of Mo doped In2 O 3 thin films for optoelectronics applications." Journal of Applied Physics. 106 (2009). AbstractWebsite

Molybdenum (0-1 at. %) doped indium oxide thin films with high near-infrared (NIR) transparency and high carrier mobility were deposited on Corning-1737 glass substrates at 400 °C by a spray pyrolysis experimental technique. X-ray diffraction (XRD) analysis confirmed the cubic bixbyite structure of indium oxide. The preferred growth orientation along the (222) plane for the low Mo doping level (0.5 at. %) shifts to (400) for higher Mo doping levels (<0.6 at. %). The crystallite size extracted from the XRD data corroborates the changes in full width at half maximum due to the variation in Mo doping. A scanning electron microscopy study illustrated the evolution in the surface microstructure as a function of Mo doping. The negative sign of the Hall coefficient confirmed the n -type conductivity. A high carrier mobility of ∼122.4 cm2 /V s, a carrier concentration of ∼9.5× 1019 cm-3, a resistivity of ∼5.3× 10-4cm, and a high figure of merit of ∼4.2× 10-2 -1 are observed for the films deposited with 0.5 at. % Mo. The obtained high average transparency of ∼83% in the wavelengths ranging from 400 to 2500 nm confirmed the extension of transmittance well into the NIR region. © 2009 American Institute of Physics.

Parthiban, S.a, Gokulakrishnan Ramamurthi Elangovan Martins Fortunato Ganesan V. a K. a. "High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications." Solar Energy Materials and Solar Cells. 93 (2009): 92-97. AbstractWebsite

Molybdenum-doped indium oxide (IMO) thin films were deposited at 450 °C for varying molybdenum concentrations in the range of 0.5-2 at% by the spray pyrolysis technique. These films confirmed the cubic bixbyite structure of polycrystalline In2O3. The preferred growth orientation along the (2 2 2) plane shifts to (4 0 0) on higher Mo doping levels. The films doped with 0.5 at% Mo showed high mobility of 76.9 cm2/(V s). The high visible transmittance extends well into the near-infrared region. A possibility of using the produced IMO films in nanocrystalline (nc) silicon solar cell applications is discussed in this article. The morphological studies showed a change in the microstructure, which is consistent with the change in crystallographic orientation. © 2008 Elsevier B.V. All rights reserved.

AÁguas, H., Fortunato Silva Pereira Martins E. V. L. "High quality a-Si:H films for MIS device applications." Thin Solid Films. 403 (2002): 26-29. AbstractWebsite

This work presents the I-V results of a-Si:H/SiOx/Pd MIS (metal-insulator-semiconductor) structures. The a-Si:H was deposited by non-conventional modified triode PECVD. This new configuration allows the deposition of high quality a-Si:H with a photosensitivity of 106, indicating the presence of low density of defects. Spectroscopic ellipsometry measurements revealed that these films are highly dense and present a very smooth surface so allowing a low defect interface between the Pd and the a-Si:H. As a result, we could make MIS photodiodes with barrier heights of 1.17 eV, which give a high reduction of the reverse dark current, an increase of the signal to noise ratio of 106 and an open circuit voltage VOC = 0.5 V. © 2002 Elsevier Science B.V. All rights reserved.

Fortunato, E.a, Assunção Gonçalves Marques Águas Pereira Ferreira Vilarinho Martins V. a A. a. "High quality conductive gallium-doped zinc oxide films deposited at room temperature." Thin Solid Films. 451-452 (2004): 443-447. AbstractWebsite

Transparent and highly conducting gallium-doped zinc oxide films were successfully deposited by rf sputtering at room temperature. The lowest resistivity achieved was 2.6×10-4 Ω cm for a thickness of 1100 nm (sheet resistance ≈1.6 Ω/sq), with a Hall mobility of 18 cm2/Vs and a carrier concentration of 1.3×1021 cm-3. The films are polycrystalline with a hexagonal structure and a strongly preferred orientation along the c-axis. A linear dependence between the mobility and the crystallite size was obtained. The films present a transmittance in the visible spectra between 80 and 90% and a refractive index of approximately 2, which is very close to the value reported for bulk material. © 2003 Elsevier B.V. All rights reserved.

Fortunato, E., Malik Seco Macarico Martins A. A. A. "High sensitivity photochemical sensors based on amorphous silicon." Materials Research Society Symposium - Proceedings. Vol. 467. 1997. 949-954. Abstract

Hydrogenated amorphous silicon photochemical sensors based on Pd-MIS structures were produced by Plasma Enhanced Chemical Vapor Deposition with two different oxidized surfaces (thermal and chemical oxidation). The behaviour of dark and illuminated current-voltage characteristics in air and in the presence of a hydrogen atmosphere is explained by the changes induced by the gases in the work function of the metal, modifying the electrical properties of the interface. The photochemical sensors produced present more than 2 orders of magnitude variation on the reverse dark current when in presence of 400 ppm hydrogen to which it corresponds a decrease of 45% on the open circuit voltage.

Fortunato, Elvira, Lavareda Guilherme Martins Rodrigo Soares Fernando Fernandes Luis. "High-detection resolution presented by large-area thin-film position-sensitive detectors." Proceedings of SPIE - The International Society for Optical Engineering. Vol. 2397. 1995. 259-270. Abstract

The aim of this work is to present the main optoelectronic characteristics of large area 1D position sensitive detectors based on amorphous silicon p-i-n diodes. From that, the device resolution, response time and detectivity are derived and discussed concerning the field of applications of the 1D thin film position sensitive detectors.