Publications

Export 36 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Bahubalindruni, P.G.a c, Tavares Fortunato Martins Barquinha V. G. b E. "Novel linear analog-adder using a-IGZO TFTs." Proceedings - IEEE International Symposium on Circuits and Systems. Vol. 2016-July. 2016. 2098-2101. Abstract

A novel linear analog adder is proposed only with n-type enhancement IGZO TFTs that computes summation of four voltage signals. However, this design can be easily extended to perform summation of higher number of signals, just by adding a single TFT for each additional signal in the input block. The circuit needs few number of transistors, only a single power supply irrespective of the number of voltage signals to be added, and offers good accuracy over a reasonable range of input values. The circuit was fabricated on glass substrate with the annealing temperature not exceeding 200° C. The circuit performance is characterized from measurements under normal ambient at room temperature, with a power supply voltage of 12 V and a load of ≈ 4 pF. The designed circuit has shown a linearity error of 2.3% (until input signal peak to peak value is 2 V), a power consumption of 78 μW and a bandwidth of ≈ 115 kHz, under the worst case condition (when it is adding four signals with the same frequency). In this test setup, it has been noticed that the second harmonic is 32 dB below the fundamental frequency component. This circuit could offer an economic alternative to the conventional approaches, being an important contribution to increase the functionality of large area flexible electronics. © 2016 IEEE.

2015
Lyubchyk, A.a, Filonovich Mateus Mendes Vicente Leitão Falcão Fortunato Águas Martins S. A. a T. "Nanocrystalline thin film silicon solar cells: A deeper look into p/i interface formation." Thin Solid Films. 591 (2015): 25-31. AbstractWebsite

The p/i interface plays a major role in the conversion efficiency of nanocrystalline silicon (nc-Si:H) solar cells. Under plasma-enhanced chemical vapor deposition (PECVD) of the intrinsic (i) nc-Si:H layer, ion bombardment can severely affect the underlying p-doped layer and degrade the solar cell performance. The core of the present work is to investigate the effect of light and heavy ion bombardment on the structural modifications of the p-layer during the p/i interface formation. The properties of the nc-Si:H materials deposited under distinct conditions are analyzed and correlated to the deposition rate and the resulting cell efficiency. To recreate the ion bombardment during the initial stages of the i-layer deposition on the p-layer, hydrogen plasma treatment was performed for 30 s (light ion bombardment), after which a flux of silane was introduced into the deposition chamber in order to initiate the heavy ion bombardment and growth of an ultra-thin (5 nm) i-layer. The structural changes of the p-type nc-Si:H layers were observed by spectroscopic ellipsometry. The obtained results confirm that detrimental structural modifications (e.g. partial amorphization of the sub-surface region and bulk) occur in the p-layer, caused by the ion bombardment. To minimize this effect, a protective buffer layer is investigated able to improve the performance of the solar cells fabricated under increased growth rate conditions. © 2015 Elsevier B.V. All rights reserved.

2012
Barquinha, P., Martins Fortunato R. E. "N-type oxide semiconductor thin-film transistors." Springer Series in Materials Science. 156 (2012): 435-476. AbstractWebsite

This chapter gives an overview about GIZO TFTs, comprising an introductory section about generic TFT structure and operation, different semiconductor technologies for TFTs - with special emphasis on AOSs and particularly on GIZO - and then some experimental results obtained for GIZO TFTs fabricated in CENIMAT. Thin-film transistors (TFTs) are important electronic devices which are predominantly used as On/Off switches in active matrix backplanes of flat panel displays (FPDs), namely liquid crystal displays (LCDs) and organic light emitting device (OLED) displays. Even if a-Si:H is still dominating the TFT market in terms of semiconductor technology, oxide semiconductors are emerging as one of the most promising alternatives for the next generation of TFTs, bringing the possibility of having fully transparent devices, low processing temperature, low cost, high performance and electrically stable properties [1, 2]. Amorphous oxide semiconductors (AOS) such as Gallium-Indium-Zinc oxide (GIZO) [3, 4], even if fabricated at temperatures below 150°, are currently capable of providing transistors with field-effect mobility (μFE) exceeding 20 cm2V-1 s-1, threshold voltage (VT) close to 0V, On/Off ratios above 108, subthreshold swing (S) around 0:20V dec-1 and fully recoverable VT shift (ΔVT) lower than 0.5V after 24 h stress with constant drain current of 10 μA. © Springer-Verlag Berlin Heidelberg 2012.

2011
Fortunato, E., Barquinha Martins P. R. "New developments on oxide electronics." Proceedings of the International Display Workshops. Vol. 3. 2011. 1681-1684. Abstract

In this article we review the recent progress in n- and p-type oxide based thin film transistors (TFT), with special emphasis to solution-processed and p-type, and we will summarize the major milestones already achieved with this emerging and very promising technology.

2010
Pereira, L., Águas Gomes Barquinha Fortunato Martins H. L. P. "Nanostructured silicon based thin film transistors processed in the plasma dark region." Journal of Nanoscience and Nanotechnology. 10 (2010): 2938-2943. AbstractWebsite

Nanostructured silicon (na-Si:H) thin films were fabricated using plasma enhanced chemical vapour deposition (PECVD) technique under high silane hydrogen dilution and a discharge frequency of 27 MHz, where the substrate was located in the dark region of the plasma, protected by a grounded metal grid. By not exposing the growth surface directly to the plasma we avoid the silicon growth surface to sustain a high ion bombardment leading to a less defective surface and highly compact films. The intrinsic films grown under these conditions were used to produce the channel region of thin film transistors (TFTs) with a bottom gate staggered configuration, integrating different dielectric layers. The devices produced exhibit a field effect mobility close to 1.84 cm 2 V -1S -1, threshold voltage around 2 V, on/off ratio above 10 7 and sub-threshold slope below 0.5 V/decade, depending on the dielectric used. Copyright © 2010 American Scientific Publishers All rights reserved.

2009
c Martins, R.a, Raniero Pereira Costa Aguas Pereira Silva Goncalves Ferreira Fortunato L. b L. a. "Nanostructured silicon and its application to solar cells, position sensors and thin film transistors." Philosophical Magazine. 89 (2009): 2699-2721. AbstractWebsite

This paper reports the performance of small area solar cells, 128 linear integrated position sensitive detector arrays and thin film transistors based on nanostructured silicon thin films produced by plasma-enhanced chemical vapour deposition technique, close to the onset of dusty plasma conditions, within the transition region from amorphous to microcrystalline. The small area solar cells, produced in a modified single chamber reactor, exhibited very good electrical characteristics with a conversion efficiency exceeding 9%. The 128 integrated position sensitive detector arrays, based on a similar pin structure, allow real-time 3D object imaging with a resolution higher than 90 l p/mm. The thin film transistors produced exhibited field effect mobility of 2.47 cm 2/V/s, threshold voltage of 2 V, on/off ratio larger than 10 7 and sub-threshold slopes of 0.32 V/decade, which are amongst the best results reported for this type of device. © 2009 Taylor & Francis.

2008
Prabakaran, R., Aguas Fortunato Martins Ferreira H. E. R. "n-PS/a-Si:H heterojunction for device application." Journal of Non-Crystalline Solids. 354 (2008): 2632-2636. AbstractWebsite

In this work, we investigate the role of amorphous silicon (a-Si:H) thin films deposited by a plasma enhanced chemical vapor deposition (PECVD) technique on porous silicon (PS) to facilitate its water vapor and oxygen gas sensing properties using its electrical response. Overall we notice a rectifying behavior from a-Si:H/PS heterojunction device, where a current enhancement of one and four orders of magnitude was observed in the presence of oxygen gas and water vapor, in comparison with atmospheric air at room temperature, respectively. The photoluminescence (PL) investigation of PS shows a slight blue shift in the PL emission band from 1.72 to 1.77 eV and the intensity of the PL is enhanced by a factor of 5.4 with increase of porosity from 21% to 77%. This PL emission may originate from the O-Si-H related absorbance bands. Alternatively, quenching of the PL intensity was observed after a-Si:H films were deposited on PS specimens. Besides, micro-Raman and atomic force microscopic (AFM) analyse were carried out to understand the structure and morphological features of the PS and a-Si:H/PS specimens. © 2007 Elsevier B.V. All rights reserved.

Fortunato, E., Barquinha Gonçalves Pereira Martins P. G. L. "New amorphous oxide semiconductor for thin film transistors (TFTs)." Materials Science Forum. 587-588 (2008): 348-352. AbstractWebsite

Thin film transistors (TFTs) have been produced by rf magnetron sputtering at room temperature, using non conventional oxide materials like amorphous indium-zinc-oxide (IZO) semiconductor, for the channel as well as for the drain and source regions. The obtained TFTs operate in the enhancement mode with threshold voltages of 2.4 V, saturation mobility of 22.7 cm2/Vs, gate voltage swing of 0.44 V/dec and an ON/OFF current ratio of 7×10 7. The high performances presented by these TFTs associated to a high electron mobility, at least two orders of magnitude higher than that of conventional amorphous silicon TFTs and a low threshold voltage, opens new doors for applications in flexible, wearable, disposable portable electronics as well as battery-powered applications.

2007
Silva, L.B.a, Baptista Raniero Doria Franco Martins Fortunato P. b L. c. "Novel Optoelectronic platform using an amorphous/nanocrystalline Silicon biosensor for the specific identification of unamplified nucleic Acid sequences based on gold nanoparticle probes." TRANSDUCERS and EUROSENSORS '07 - 4th International Conference on Solid-State Sensors, Actuators and Microsystems. 2007. 935-938. Abstract

Here we describe an innovative optoelectronic platform which enables the specific detection of unamplified nucleic acid sequences with the integration of oligonucleotide-derivatized gold nanoparticles, a colour sensor and a light emission source for a colorimetric detection method. This new low cost, fast and simple optoelectronic platform permits detection of less than 1 picomole quantities of nucleic acid without target or signal amplification. ©2007 IEEE.

2006
Pereira, L., Águas Fortunato Martins H. E. R. "Nanostructure characterization of high k materials by spectroscopic ellipsometry." Applied Surface Science. 253 (2006): 339-343. AbstractWebsite

In this work, the optical and structural properties of high k materials such as tantalum oxide and titanium oxide were studied by spectroscopic ellipsometry, where a Tauc-Lorentz dispersion model based in one (amorphous films) or two oscillators (microcrystalline films) was used. The samples were deposited at room temperature by radio frequency magnetron sputtering and then annealed at temperatures from 100 to 500 °C. Concerning the tantalum oxide films, the increase of the annealing temperature, up to 500 °C does not change the amorphous nature of the films, increasing, however, their density. The same does not happen with the titanium oxide films that are microcrystalline, even when deposited at room temperature. Data concerning the use of a four-layer model based on one and two Tauc-Lorentz dispersions is also discussed, emphasizing its use for the detection of an amorphous incubation layer, normally present on microcrystalline films grown by sputtering. © 2006 Elsevier B.V. All rights reserved.

Elangovan, E., Marques Martins Fortunato A. R. E. "A next generation TCO material for display systems: Molybdenum doped indium oxide thin films." Materials Research Society Symposium Proceedings. Vol. 936. 2006. 1-6. Abstract

Thin films of indium molybdenum oxide (IMO) were rf sputtered onto glass substrates at room temperature. The films were studied as a function of sputtering power (ranging 40-180 W) and sputtering time (ranging 2.5-20 min). Thickness of the films found varied between 50-400 nm. The films were characterized for their structural (XRD), electrical (Hall measurements) and optical (Transmittance spectra) properties. XRD studies revealed that the films are amorphous for the sputtering power ≤ 100 W and deposition time ≤ 5 min. All the other films are polycrystalline and the strongest refection along (222) plane showing a preferential orientation. A minimum bulk resistivity of 2.65 × 10-3 Ω-cm and a maximum carrier concentration of 4.16 × 1020 cm-3 have been obtained for the films sputtered at 180 W (10 min). Whereas maximum mobility (19.5 cm2 V-1 s-1) has been obtained for the films sputtered at 80 W (10 min). A maximum visible transmittance of 90% (500 nm) has been obtained for the films sputtered at 80 W (10 min) with a minimum of 27% for those sputtered at 180 W. The optical band gap of the films found varying between 3.75 and 3.90 eV for various sputtering parameters. © 2006 Materials Research Society.

Pereira, L.a, Martins Schell Fortunato Martins R. M. S. b. "Nickel-assisted metal-induced crystallization of silicon: Effect of native silicon oxide layer." Thin Solid Films. 511-512 (2006): 275-279. AbstractWebsite

This work focuses on the role of the native oxide layer (SiO2) on the nickel (Ni)-assisted crystallization of amorphous silicon (a-Si). In some samples, the native oxide was removed using a HF-diluted solution before Ni layers with 0.5 nm be deposited on a-Si. The results show that the presence of a thin SiO2 layer of about 3 nm between the a-Si and the Ni delays the crystallization process. Ellipsometry data show that, after annealing for 5 h at 500 °C, the HF-cleaned sample presents a crystalline fraction of 88%, while the one with the native oxide has only 35%. This difference disappears after 20 h where both samples present similar crystalline fraction. These facts are also reflected on the film's electrical properties, where the activation energy for samples annealed for 5 h rises from 0.42 eV to 0.55 eV, when the oxide layer is removed. After 20 h and 30 h, the activation energy is around 0.55 eV for both kinds of samples, meaning that films with similar electrical properties are now obtained. However, the XRD data suggest the presence of some structural differences attributed to slight differences on the crystallization process. © 2005 Elsevier B.V. All rights reserved.

Santos, V.a, Borges Ranito Pires Araújo Marques Tomás Fortunato Martins Nunes J. P. a C. "Novel multilayer coatings on polyethylene for acetabular devices." Materials Science Forum. 514-516 (2006): 868-871. AbstractWebsite

Total hip replacement is a common practice in every day clinical work. Artificial hip implants consist of a femoral component and an acetabular component. Nowadays the acetabular component is composed of a polymeric cup and a metallic shell. This study focuses the development of an innovative acetabular component substituting the metallic shell by a multilayer coating on the acetabular cup. A titanium coating was deposited onto ultra-high molecular weight polyethylene (UHMWPE) samples by physical vapour deposition (PVD), having an in situ pre-treatment with argon ion bombardment in order to optimize the adhesive strength by surface modification, followed by the deposition of a thin film of hydroxyapatite (HA) using rf magnetron sputtering technique, at room temperature. Results obtained seem to indicate that these multilayer coatings can be a viable alternative to the metallic shell, leading to the substitution of a two part for a one part acetabular component.

2004
Fortunato, E.a, Gonçalves Marques Viana Águas Pereira Ferreira Vilarinho Martins A. a A. a. "New developments in gallium doped zinc oxide deposited on polymeric substrates by RF magnetron sputtering." Surface and Coatings Technology. 180-181 (2004): 20-25. AbstractWebsite

Gallium-doped zinc oxide (GZO) thin films have been deposited onto polyethylene naphthalate (PEN) substrates by r.f. magnetron sputtering at room temperature. The influence of the film thickness (from 70 to 890 nm) on the electrical, structural and morphological properties are presented. The lowest resistivity obtained was 5 × 10-4 Ω cm with a Hall mobility of 13.7 cm2/Vs and a carrier concentration of 8.6 × 1020 cm-3. These values were obtained by passivating the surface of the polymer with a thin silicon dioxide, so preventing the moisture and oxygen permeation inside the film. © 2003 Elsevier B.V. All rights reserved.

Fortunato, E., Barquinha Pimentel Gonçalves Pereira Marques Martins P. A. A. "Next generation of thin film transistors based on zinc oxide." Materials Research Society Symposium Proceedings. Vol. 811. 2004. 347-352. Abstract

We report high performance ZnO thin film transistor (ZnO-TFT) fabricated by rf magnetron sputtering at room temperature with a bottom gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 19 V, a field effect mobility of 28 cm2/Vs, a gate voltage swing of 1.39 V/decade and an on/off ratio of 3×105. The ZnO-TFT present an average optical transmission (including the glass substrate) of 80% in the visible part of the spectrum. The combination of transparency, high field-effect mobility and room temperature processing makes the ZnO-TFT a very promising low cost optoelectronic device for the next generation of invisible and flexible electronics.

Fernandes, M.a, Vieira Martins M. a R. b. "Novel structure for large area image sensing." Sensors and Actuators, A: Physical. 115 (2004): 357-361. AbstractWebsite

This work presents preliminary results in the study of a novel structure for a laser scanned photodiode (LSP) type of image sensor. In order to increase the signal output, a stacked p-i-n-p-i-n structure with an intermediate light-blocking layer is used. The image and the scanning beam are incident through opposite sides of the sensor and their absorption is kept in separate junctions by an intermediate light-blocking layer. As in the usual LSP structure the scanning beam-induced photocurrent is dependent on the local illumination conditions of the image. The main difference between the two structures arises from the fact that in this new structure the image and the scanner have different optical paths leading to an increase in the photocurrent when the scanning beam is incident on a region illuminated on the image side of the sensor, while a decreasing in the photocurrent was observed in the single junction LSP. The results show that the structure can be successfully used as an image sensor even though some optimization is needed to enhance the performance of the device. © 2004 Elsevier B.V. All rights reserved.

2003
Assunção, V., Fortunato Marques Gonçalves Ferreira Águas Martins E. A. A. "New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering." Thin Solid Films. 442 (2003): 102-106. AbstractWebsite

Gallium-doped zinc oxide films were prepared by r.f. magnetron sputtering at room temperature as a function of the substrate-target distance. The best results were obtained for a distance of 10 cm, where a resistivity as low as 2. 7 × 10-4 Ω cm, a Hall mobility of 18 cm2/Vs and a carrier concentration of 1.3 × 1021 cm-3 were achieved. The films are polycrystalline presenting a strong crystallographic c-axis orientation (002) perpendicular to the substrate. The films present an overall transmittance in the visible part of the spectra of approximately 85%, on average. © 2003 Elsevier B.V. All rights reserved.

2002
Seiroco, H., Vincente Ferreira Fernandes Marvão Martins Fortunato Martins M. J. F. "New adhesion process based on lead-free solder applied in electronic power devices." Key Engineering Materials. 230-232 (2002): 92-95. AbstractWebsite

The aim of this paper is to present a set of electric data concerning the performances before and after ageing of Cu-Sn-Cu joins used to solder power diodes and to compare the results achieved with the ones obtained in diodes soldered using the conventional technology. The set of results achieved show that the Cu-Sn-Cu joins present even better performances than the ones exhibited by diodes soldered using the conventional technology, without requiring the use of Mo discs to be inserted between the silicon crystal and the metal contacts (stud or finger) to compensate thermal mismatches.

Brida, D., Fortunato Águas Silva Marques Pereira Ferreira Martins E. H. V. "New insights on large area flexible position sensitive detectors." Journal of Non-Crystalline Solids. 299 (2002): 1272-1276. AbstractWebsite

In this paper we present an improved version of large area (5 mm × 80 mm) flexible position sensitive detectors deposited on polyimide (Kapton® VN) substrates with 75 μm thickness, produced by plasma enhanced chemical vapor deposition (PECVD). The structures presented by the sensors are Kapton/ZnO:Al/(pin)a-Si:H/Al and the heterostructure Kapton/Cr/(in)a-Si:H/ZnO:Al. These sensors were characterized by spectral response, photocurrent dependence as a function of light intensity and position detectability measurements. The set of data obtained on one-dimensional position sensitive detectors based on the heterostructure show excellent performances with a maximum spectral response of 0.12 A/W at 500 nm and a non-linearity of ±10%. © 2002 Elsevier Science B.V. All rights reserved.

2001
Ferreira, I.a, Fernandes F.Braza Vilarinho Fortunato Martins P. b E. a. "Nanocrystalline p-type silicon films produced by hot wire plasma assisted technique." Materials Science and Engineering C. 15 (2001): 137-140. AbstractWebsite

We report in this paper the influence of the rf power on the properties of p-type silicon thin films produced by hot wire plasma assisted chemical vapor deposition (HWPA-CVD) technique, using a gas mixture containing SiH4, B2H6, CH4 and H2. The influence of the rf power in the film morphology, its structure and its composition has been determined by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and infrared spectroscopy. The electrical dark conductivity, activation energy, optical band gap and growth rate values for the different rf power was also evaluated. The data achieved show that rf power rules the surface morphology, the film structure and its electrical characteristics. © 2001 Elsevier Science B.V. All rights reserved.

Martins, R., Águas Silva Ferreira Cabrita Fortunato H. V. I. "Nanostructured silicon films produced by PECVD." Materials Research Society Symposium - Proceedings. Vol. 664. 2001. A961-A966. Abstract

This paper presents the process conditions that lead to the production of nanostructured silicon films grown by plasma enhanced chemical vapour deposition close to the so-called gamma regime (powder formation), highly dense and with low density of bulk states. Thus, the powder management is one important issue to be addressed in this paper. As a general rule we observed that high quality films (low density of states and high μτ products) are obtained when films are grown under low ion bombardment at high hydrogen dilution and deposition pressure conditions, to allow the proper surface passivation and surface activation.

Martins, R., Ferreira Cabrita Águas Silva Fortunato I. A. H. "New steps to improve a-Si:H device stability by design of the interfaces." Advanced Engineering Materials. 3 (2001): 170-173. AbstractWebsite
n/a
2000
Ferreira, I.M.M., Cabrita Fortunato Martins A. M. F. E. "N-type silicon films produced by hot wire technique." Materials Research Society Symposium - Proceedings. Vol. 609. 2000. A651-A656. Abstract

The role of the deposition pressure (p) and the type of filaments (tungsten, W or tantalum, Ta) used to produce large area (10cm×10cm) n-type Si:H films by hot wire chemical vapour (HW-CVD) deposition technique was investigated. The data show that the electro-optical properties of the films produced are dependent on the gas pressure used. In the pressure range of 1×10-3 Torr to 1.0 Torr, the room dark conductivity (σd) varies from 1×10-8 to 2 S/cm for films produced at the same hydrogen dilution and filament temperature (Tfil). On the other hand, the hydrogen concentration (CH) decreases from 10% to 2%, while the growth rate (R) shows an exponential increase, from 1 to 9 Å/s. The SIMS analysis, within the detection limits, does not reveal the existence of any significant W or Ta contamination in the films produced.

Ferreira, I.M.M., Martins Cabrita Fortunato Vilarinho R. F. P. A. "Nanocrystalline undoped silicon films produce by hot wire plasma assisted technique." Materials Research Society Symposium - Proceedings. Vol. 609. 2000. A2241-A2246. Abstract

In this work, we show results concerning electro-optical properties, composition and morphology of nanocrystalline hydrogenated undoped silicon (nc-Si:H) films produced by hot wire plasma assisted chemical vapour deposition process (HWPA-CVD) and exhibiting a compact granular structure, as revealed by SEM micrographs. This was also inferred by infrared spectra, which does not present the SiO vibration band located at 1050-1200 cm-1, even when samples have long atmospheric exposition. The photoconductivity measured at room temperature also does not change when samples have a long time exposition to the air or to the light irradiation. The influence of hydrogen dilution on the properties of the films was also investigated.

Martins, R., Águas Cabrita Tonello Silva Ferreira Portunato Guimares H. A. P. "New nanostructured silicon films grown by pecvd technique under controlled powder formation conditions." Solar Energy. 69 (2000): 263-269. AbstractWebsite

In this paper the influence of the DC grid bias on the plasma impedance and the I-V behaviour of silane plasmas used to grow undoped amorphous silicon films by plasma enhanced chemical vapour deposition technique using a triode configuration at or close to the powder regime is studied. The aim is to determine the correlation between the r.f. power and the DC grid voltage with the plasma parameters, under isothermal gas conditions. The results should lead to the production of nanostructured films, with the required optoelectronic characteristics for photovoltaic applications. The results achieved show the existence of a boundary region close to the γ-regime (powder formed) where nanoparticles can be formed by moderated ion bombardment of the growing surface. This is characterised by the plasma resistance of the same order of magnitude of the plasma reactance. Under this condition, it is possible to grow amorphous silicon films that can incorporate nanoparticles, exhibiting photosensitivities of about 107 (two orders of magnitude larger than the one exhibited by films grown under conventional conditions) with densities of states determined by the constant photocurrent method below 3 × 1015 cm3. Apart from that, the growth of the films is less affected by light soaking than the conventional films grown by standard techniques. © 2001 Elsevier Science Ltd. All rights reserved.