Publications

Export 132 results:
Sort by: Author Title Type [ Year  (Desc)]
2004
Fortunato, E., Barquinha Pimentel Gonçalves Pereira Marques Martins P. A. A. "Next generation of thin film transistors based on zinc oxide." Materials Research Society Symposium Proceedings. Vol. 811. 2004. 347-352. Abstract

We report high performance ZnO thin film transistor (ZnO-TFT) fabricated by rf magnetron sputtering at room temperature with a bottom gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 19 V, a field effect mobility of 28 cm2/Vs, a gate voltage swing of 1.39 V/decade and an on/off ratio of 3×105. The ZnO-TFT present an average optical transmission (including the glass substrate) of 80% in the visible part of the spectrum. The combination of transparency, high field-effect mobility and room temperature processing makes the ZnO-TFT a very promising low cost optoelectronic device for the next generation of invisible and flexible electronics.

Fernandes, M.a, Vieira Martins M. a R. b. "Novel structure for large area image sensing." Sensors and Actuators, A: Physical. 115 (2004): 357-361. AbstractWebsite

This work presents preliminary results in the study of a novel structure for a laser scanned photodiode (LSP) type of image sensor. In order to increase the signal output, a stacked p-i-n-p-i-n structure with an intermediate light-blocking layer is used. The image and the scanning beam are incident through opposite sides of the sensor and their absorption is kept in separate junctions by an intermediate light-blocking layer. As in the usual LSP structure the scanning beam-induced photocurrent is dependent on the local illumination conditions of the image. The main difference between the two structures arises from the fact that in this new structure the image and the scanner have different optical paths leading to an increase in the photocurrent when the scanning beam is incident on a region illuminated on the image side of the sensor, while a decreasing in the photocurrent was observed in the single junction LSP. The results show that the structure can be successfully used as an image sensor even though some optimization is needed to enhance the performance of the device. © 2004 Elsevier B.V. All rights reserved.

Ferreira, I., Igreja Fortunato Martins R. E. R. "Porous a/nc-Si:H films produced by HW-CVD as ethanol vapour detector and primary fuel cell." Sensors and Actuators, B: Chemical. 103 (2004): 344-349. AbstractWebsite

This work reports the use of undoped porous amorphous/nanocrystalline hydrogenated silicon (a/nc-Si:H) thin films produced by hot wire chemical vapour deposition (HW-CVD) as ethanol detector above 50ppm and as a primary fuel cell where a power of 4μW/cm2 was obtained in structures of the type glass/ITO/i-a-nc-Si:H/Al. The porous silicon looks like a sponge constituted by grains and cluster of grains that determines the type of surface morphology and the behaviour of the structure under the presence of vapour moisture. Apart from that, the detector/device performances will also depend on the type of interlayer and interfaces with the metal contacts. The sponge like structure adsorbs the OH groups in uncompensated bonds, which behave as donor-like carriers, leading to an increase in the current flowing through the material, directly dependent on the ethanol vapour pressure. The corresponding role of the components of the microstructure on this detector was investigated by spectroscopic impedance. The response time of the current of the sensor and its recovery time are in the range of 10-50s at room temperature. © 2004 Elsevier B.V. All rights reserved.

Ferreira, I., Águas Pereira Fortunato Martins H. L. E. "Properties of a-Si:H intrinsic films produced by HWPA-CVD technique." Thin Solid Films. 451-452 (2004): 366-369. AbstractWebsite

In this paper, we investigate the optoelectronic properties and the photodegradation of amorphous silicon films produced by the hot wire plasma assisted technique (HWPA-CVD). We observed that hydrogen dilution in the gas phase plays an important role in the time dependence of the photoconductivity, which is correlated with an enhancement of defect density. We also compare the degradation of these films with those produced by plasma enhanced and by hot wire chemical vapour deposition techniques (PECVD and HW-CVD) and we found lower time dependence for the photodegradation of the films produced by HWPA-CVD technique © 2003 Elsevier B.V. All rights reserved.

Fortunato, E.M.C., Barquinha Pimentel Gonçalves Marques Martins Pereira P. M. C. A. "Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature." Applied Physics Letters. 85 (2004): 2541-2543. AbstractWebsite

The fabrication of high field-effect mobility ZnO thin film transistor (ZnO-TFT) at room temperature by rf magnetron sputtering was discussed. The ZnO used was deposited onto borosilicate glass substrate with a thickness of 1 mm with 100 x 100 mm surface area, coated with a 200 nm sputtered ITO film. The hall mobilities of about 2 cm2 / V s and a carrier concentration of 3 x 1016cm-3 were measured for the films with lower resistivity. It was observed that the ZnO-TFT presented an average optical transmission of 80% in the visibility part of the spectrum.

Fortunato, E., Assunção Marques Gonçalves Águas Pereira Ferreira Fernandes Silva Martins V. A. A. "ZnO:Ga thin films produced by RF sputtering at room temperature: Effect of the power density." Materials Science Forum. 455-456 (2004): 12-15. AbstractWebsite

Ga-doped polycrystalline zinc oxide (GZO) thin films have been deposited at high growth rates by rf magnetron sputtering. The dependence of electrical, optical and morphological properties on the rf power density were investigated. The lowest resistivity of 1.9×10-4 Ωcm was obtained for a rf power density of 9 W/cm2 and an argon sputtering pressure of 0.15 Pa at room temperature. The films are polycrystalline with a hexagonal structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface. The films present an overall transmittance in the visible spectra of about 85%. The low resistivity, accomplished with a high growth rate deposited at room temperature, enables the deposition of these films onto polymeric substrates for flexible optoelectronic devices and displays.

2003
Fortunate, E., Assunção Marques Ferreira Águas Pereira Martins V. A. I. "Characterization of transparent and conductive ZnO:Ga thin films produced by rf sputtering at room temperature." Materials Research Society Symposium - Proceedings. Vol. 763. 2003. 225-230. Abstract

Gallium-doped zinc oxide films were prepared by rf magnetron sputtering at room temperature as a function of the substrate-target distance. The best results were obtained for a distance of 10 cm, where a resistivity as low as 2.7×10-4 Ωcm, a Hall mobility of 18 cm2/Vs and a carrier concentration of 1.3×1021 cm-3 were achieved. The films are polycrystalline presenting a strong crystallographic c-axis orientation (002) perpendicular to the substrate. The films present an overall transmittance in the visible part of the spectra of about 85 %, in average. The low resistivity, accomplished with a high growth rate deposited at RT, enables the deposition of these films onto polymeric substrates for flexible applications.

Ferreira, I., Fortunato Martins E. R. "Combining HW-CVD and PECVD techniques to produce a-Si:H films." Thin Solid Films. 427 (2003): 231-235. AbstractWebsite

Amorphous undoped a-Si:H films have been produced by hot wire plasma assisted chemical vapour deposition (HWPA-CVD), which combines the hot wire chemical vapour deposition (HW-CVD) and plasma enhanced chemical vapour deposition techniques. In this work we analyse the dissociation mechanism of the gas during the film growth in both processes with a quadrupole mass spectrometer. Besides that, the energy delivered to the gas dissociation is determined and correlated with the films properties. Thus, based on the results of the dissociated species for each deposition condition and process, we explain why the growth rate is enhanced when the filament temperature rises in HW-CVD process and why it decreases as r.f. power is enhanced in HWPA-CVD process. © 2002 Elsevier Science B.V. All rights reserved.

Ferreira, I.a, Costa Fortunato Martins M. E. V. b. "From porous to compact films by changing the onset conditions of HW-CVD process." Thin Solid Films. 427 (2003): 225-230. AbstractWebsite

Doped a/μc-Si:H films were produced in different starting deposition conditions by the hot wire chemical vapor deposition technique. In this paper, we show that by changing the initial onset deposition conditions of the process and maintaining the overall pressure, hydrogen dilution and filament temperature, it is possible to control the compactness of the films. As the films nucleation is the key parameter to produce compact films, we show that starting the process with hydrogen and progressively introducing the process gas enhances the compactness and improve the electrical properties of the films produced. © 2002 Elsevier Science B.V. All rights reserved.

Fortunato, E., Gonçalves Marques Assunção Ferreira Águas Pereira Martins A. A. V. "Gallium zinc oxide coated polymeric substrates for optoelectronic applications." Materials Research Society Symposium - Proceedings. Vol. 769. 2003. 291-296. Abstract

Highly transparent and conductive ZnO:Ga thin films were produced by rf magnetron sputtering at room temperature on polyethylene naphthalate substrates. The films present a good electrical and optical stability, surface uniformity and a very good adhesion to the polymeric substrates. The lowest resistivity obtained was 5×10-4 Ωcm with a sheet resistance of 15 Ω/sqr and an average optical transmittance in the visible part of the spectra of 80%. It was also shown that by passivating the polymeric surface with a thin SiO2 layer, the electrical and structural properties of the films are improved nearly by a factor of 2.

Fortunato, E., Gonçalves Assunção Marques Águas Pereira Ferreira Martins A. V. A. "Growth of ZnO:Ga thin films at room temperature on polymeric substrates: Thickness dependence." Thin Solid Films. 442 (2003): 121-126. AbstractWebsite

In this paper, we present results concerning the thickness dependence (from 70 to 890 nm) of electrical, structural, morphological and optical properties presented by gallium-doped zinc oxide (GZO) deposited on polyethylene naphthalate (PEN) substrates by r.f. magnetron sputtering at room temperature. For thicknesses higher than 300 nm an independent correlation between the electrical, morphological, structural and optical properties are observed. The lowest resistivity obtained was 5 × 10-4 Ω cm with a sheet resistance of 15 Ω/□ and an average optical transmittance in the visible part of the spectra of 80%. It is also shown that by passivating the surface of the polymer by depositing a thin silicon dioxide layer the electrical and structural properties of the films are improved nearly by a factor of two. © 2003 Elsevier B.V. All rights reserved.

Fortunato, E., Godinho Santos Marques Assunção Pereira Águas Ferreira Martins M. H. H. "Surface modification of a new flexible substrate based on hydroxypropylcellulose for optoelectronic applications." Thin Solid Films. 442 (2003): 127-131. AbstractWebsite

In this paper, we present the preliminary results concerning the deposition of highly transparent and conductive gallium-doped zinc oxide (GZO) deposited on transparent flexible substrate based on cellulose derivatives. Prior to the deposition of the GZO film, the surface of the polymer have been coated with a thin silicon dioxide (SiO2) layer deposited by thermal evaporation assisted by an electron gun. By doing this surface treatment, we succeeded in depositing highly conductive and transparent GZO with an electrical resistivity of 2.0 × 10-3 Ω cm and an average optical transmittance in the visible part of the spectrum (400-700 nm) of 70% by r.f. magnetron sputtering at room temperature. Besides the optoelectronic properties, the films are mechanically stable with a polycrystalline structure with a strong preferred (002) orientation, parallel to the substrate. © 2003 Elsevier B.V. All rights reserved.

2002
Fortunato, E., Nunes Costa Brida Ferreira Martins P. D. D. "Characterization of aluminium doped zinc oxide thin films deposited on polymeric substrates." Vacuum. 64 (2002): 233-236. AbstractWebsite

We report, for the first time, results on transparent ZnO:Al thin films deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by magnetron sputtering. The structural, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (0 0 2) perpendicular to the substrate surface. The ZnO:Al thin films with 83% transmittance in the visible region and a resistivity as low as 3.6 × 10-2 Ωcm have been obtained, as deposited. The obtained results are comparable to those obtained on glass substrates, opening a new field of low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices. © 2002 Elsevier Science Ltd. All rights reserved.

Ferreira, I., Cabrita Fortunato Martins A. E. R. "Composition and structure of silicon-carbide alloys obtained by hot wire and hot wire plasma assisted techniques." Vacuum. 64 (2002): 261-266. AbstractWebsite

In this work we present results concerning the composition and structure of intrinsic thin film silicon carbide alloys obtained by hot wire and hot wire plasma assisted techniques using ethylene as carbon gas source. The data show that by increasing the percentage of ethylene in the gas mixture from 14% to 60% the optical band gap is enhanced from 1.8 eV to 2.3 eV, for films produced by hot wire technique at a filament temperature of 2123K (1850°C). This is attributed to the increase of carbon incorporation, which was confirmed by the infrared spectra data where an increase is observed in the SiC stretching vibration mode ascribed to the peak located at around 750cm-1. On the other hand, the films produced by combining hot wire and rf plasma show a more efficient carbon incorporation. The SEM photographs of samples produced with hot wire technique reveal an amorphous structure, confirmed by micro-Raman spectroscopy data, while the samples produced with plasma assisting the process show a granular structure with grain sizes in the range of 100-200nm. © 2002 Elsevier Science Ltd. All rights reserved.

Fortunato, E.a, Brida Pereira Águas Silva Ferreira Costa Teixeira Martins D. a L. a. "Dependence of the strains and residual mechanical stresses on the performances presented by a-Si:H thin film position sensors." Advanced Engineering Materials. 4 (2002): 612-616. AbstractWebsite

The influence of residual stresses on the performances of large area position sensitive detectors produced on flexible substrates are presented here. For evaluating the residual stresses, two main techniques were used: An active optical triangulation and angle resolved scattering and the constant photocurrent method (CPM). From the results it was possible to correlate the stresses and the density of defects present in the films.

Fortunato, E., Nunes Marques Costa Águas Ferreira Costa Martins P. A. D. "Highly conductive/transparent ZnO:Al thin films deposited at room temperature by rf magnetron sputtering." Key Engineering Materials. 230-232 (2002): 571-574. AbstractWebsite

Transparent conducting ZnO:Al thin films have been deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by r.f. magnetron sputtering. The structural, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface. As deposited ZnO:Al thin films have an 85% transmittance in the visible and infra-red region and a resistivity as low as 3.6×10-2 Ωcm. The obtained results are comparable to those ones obtained on glass substrates, opening a new field for low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices.

Ferreira, I.a, Fortunato Martins Vilarinho E. a R. a. "Hot-wire plasma assisted chemical vapor deposition: A deposition technique to obtain silicon thin films." Journal of Applied Physics. 91 (2002): 1644-1649. AbstractWebsite

We have produced amorphous intrinsic silicon thin films by hot-wire plasma assisted chemical vapor deposition, a process that combines the traditional rf plasma and the recent hot-wire techniques. In this work we have studied the influence of hydrogen gas dilution and rf power on the surface morphology, composition, structure and electro-optical properties of these films. The results show that by using this deposition technique it is possible to obtain at moderate rf power and filament temperature, compact i-type silicon films with ημτ of the order of 10 -5cm 2V -1, without hydrogen dilution. © 2002 American Institute of Physics.

Ferreira, I., Vilarinho Fernandes Fortunato Martins P. F. E. "Influence of hydrogen gas dilution on the properties of silicon-doped thin films prepared by the hot-wire plasma-assisted technique." Key Engineering Materials. 230-232 (2002): 591-594. AbstractWebsite

P- and n-type silicon thin films have been produced using a new hot wire plasma assisted deposition process that combines the conventional plasma enhanced chemical vapor deposition and the hot wire techniques. The films were produced in the presence of different hydrogen gas flow and their optoelectronic, structural and compositional properties have been studied. The optimized optoelectronic results achieved for n-type Si:H films are conductivity at room temperature of 9.4(Ωcm)-1 and optical band gap of 2eV while for p-type SiC:H films these values are 1 × 10-2(Ωcm)-1 and 1.6eV, respectively. The films exhibit the required optoelectronic characteristics and compactness for device applications such as solar cells.

Fantoni, A.a b, Viera Martins M. a R. b. "Influence of the intrinsic layer characteristics on a-Si:H p-i-n solar cell performance analysed by means of a computer simulation." Solar Energy Materials and Solar Cells. 73 (2002): 151-162. AbstractWebsite

In this paper a set of one-dimensional simulations of a-Si:H p-i-n junctions under different illumination conditions and with different intrinsic layer are presented. The simulation program ASCA permits the analysis of the internal electrical behaviour of the cell allowing a comparison among the different internal configurations determined by a change in the input set. Results about the internal electric configuration will be presented and discussed outlining their influence on the current tension characteristic curve. Considerations about the drift-diffusion and the generation-recombination balance distributions, outlined by the simulation, can be used to explain the correlation between the basic device output, the i-layer characteristics (thickness and DOS), the incident radiation intensity and photon energy. © 2002 Elsevier Science B.V. All rights reserved.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Godinho Almeida Borges Martins P. a A. a. "Influence of the strain on the electrical resistance of zinc oxide doped thin film deposited on polymer substrates." Advanced Engineering Materials. 4 (2002): 610-612. AbstractWebsite

Tensile tests were performed on PET films coated with Al doped zinc oxide films by RF magnetron sputtering. During the tensile elongation, the electrical resistance of the oxide was evaluated in situ. The results indicate that the increase in the electrical resistance is related to the crack debsity and crack width, which also depends on the film thickness.

Ferreira, I., Cabrita Braz Fernandes Fortunato Martins A. F. E. "Morphology and structure of nanocrystalline p-doped silicon films produced by hot wire technique." Vacuum. 64 (2002): 237-243. AbstractWebsite

In this paper we report results of nanocrystalline p-doped silicon films produced by hot wire chemical vapour deposition technique with Ta filaments, using a pre-mixed gas containing silane, diborane, methane, helium and hydrogen. The data obtained show that the films produced exhibit good optoelectronic properties and show a surface morphology dependent on the filament temperature and hydrogen dilution. The increase in the filament temperature, keeping constant the hydrogen dilution (87%), promotes the preferential growth of the crystals in the {220} direction, giving rise to a pyramidal-like surface structure. This behaviour is observed by the SEM micrographs as well as by the micro-Raman and X-ray diffraction analyses. On the other hand, using a constant filament temperature, the increase in the hydrogen dilution contributes to an increase in both {111} and {220} diffraction peaks. Thus, by combining both filament temperature and hydrogen dilution the film surface can be controlled from a smooth to a pyramidal-like structure, without decreasing the crystalline fraction of the films. The structure and morphology is also reflected in the stability of the electrical dark conductivity. We observe that this property depends on the temperature range of the measurements and on the exposition time of films to the atmospheric conditions. © 2002 Elsevier Science Ltd. All rights reserved.

Ferreira, I.a, Fortunato Pereira Costa Martins E. a L. a. "The properties of a-Si:H films deposited on Mylar substrates by hot-wire plasma assisted technique." Journal of Non-Crystalline Solids. 299-302 (2002): 30-35. AbstractWebsite

In this work we studied the influence of hydrogen dilution, rf power, and the filament and substrate temperatures on the electro-optical properties and composition of a-Si:H films produced by hot wire plasma assisted technique. The a-Si:H films were produced on Mylar substrates with growth rate of up to 37 Å/s, ημτ product of 1.6 × 10-7 cm2/V, photoconductivity to dark conductivity ratio of 1 × 104 (at AM1.5 radiation), and a dark conductivity of about 10-10 (Ω cm)-1 for substrate temperature of 130 °C, hydrogen dilution of 99%, filament temperature of 1700 °C, and rf power of 100 W. © 2002 Elsevier Science B.V. All rights reserved.

Fernandes, F.M.Braz, Martins Teresa Nogueira Silva Nunes Costa Ferreira Martins R. M. R. "Structural characterisation of NiTi thin film shape memory alloys." Sensors and Actuators, A: Physical. 99 (2002): 55-58. AbstractWebsite

Currently, microactuators are being developed using shape memory alloys (SMAs), which allow simple design geometries and provide large work outputs in restricted space. Several techniques have been used to produce NiTi shape memory alloy thin films, but from the practical point of view, only the sputter deposition method has succeeded so far. Vacuum evaporation of NiTi binary alloy entails the potential problem of the evaporation rates of each component not being the same due to differences in vapour pressure. Aiming to study the possible applications of SMAs to microfabrication, NiTi thin films were produced at CENIMAT by sputter and vacuum evaporation using raw materials from different sources. The films were analysed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) at room temperature, as well as in situ high temperature, in order to characterise the temperature ranges at which the different structural transformations occur. © 2002 Elsevier Science B.V. All rights reserved.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Godinho Almeida Borges Martins P. a A. a. "Transparent, conductive ZnO:Al thin film deposited on polymer substrates by RF magnetron sputtering." Surface and Coatings Technology. 151-152 (2002): 247-251. AbstractWebsite

In this paper, we present the optical, electrical, structural and mechanical properties exhibited by aluminum-doped zinc oxide (ZnO:Al) thin films produced by RF magnetron sputtering on polymeric substrates (polyethylene terephthalate, PET; Mylar type D from Dupont®) with a standard thickness of 100 μm. The influence of the uniaxial tensile strain on the electrical resistance of these films was evaluated in situ for the first time during tensile elongation. In addition, the role of the thickness on the mechanical behavior of the films was also evaluated. The preliminary results reveal that the increase in electrical resistance is related to the number of cracks, as well as the crack width, which also depends on the film thickness. © 2002 Elsevier Science B.V. All rights reserved.

2001
Fortunato, E., Nunes Marques Costa Águas Ferreira Costa Martins P. A. D. "Characterization of zinc oxide thin films deposited by rf magnetron sputtering on Mylar substrates." Materials Research Society Symposium - Proceedings. Vol. 666. 2001. F3211-F3216. Abstract

Aluminium doped zinc oxide thin films (ZnO:Al) have been deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by r.f. magnetron sputtering. The structural, morphological, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface. The ZnO:Al thin films with 85% transmittance in the visible and infra-red region and a resistivity as low as 3.6×10-2 Ωcm have been obtained, as deposited. The obtained results are comparable to those ones obtained on glass substrates, opening a new field of low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices.