Publications

Export 132 results:
Sort by: Author Title Type [ Year  (Desc)]
1994
Fortunato, E.a, Lavareda Vieira Martins Ferreira G. a M. a. "Application of thin film technology to optical sensors." Vacuum. 45 (1994): 1151-1154. AbstractWebsite

In this paper we present results of PIN single and dual axis Thin Film Position Sensitive Detectors (TFPSD) based on hydrogenated amorphous silicon (a-Si:H) technology, with a wide detection area (up to 80 × 80 mm). These sensors provide an alternative to Charge Coupled Devices (CCDs) when large inspection areas are needed, under a requirement to use simpler technology. In this paper we analyse the forward and reverse I-V characteristics in the dark and under illumination, as well as the device linearity of TFPSD. © 1994.

Fortunato, Elvira, Carvalho Carlos Bicho Ana Martins Rodrigo N. "Effect of different TCO interfaces on the performances presented by hydrogenated amorphous silicon p-i-n solar cells." Conference Record of the IEEE Photovoltaic Specialists Conference. Vol. 1. 1994. 646-649. Abstract

In this paper we report results concerning the effect of the TCO interface on hydrogenated amorphous silicon (a-Si:H) p-i-n homojunction solar cells. Its correlation with dark current density-voltage (J-V) characteristics and spectral response, before and after while light-soaking degradation, is analysed. From this study, we conclude that the properties and stability of these devices are not only influenced by the a-Si:H film properties, but also by the properties of the transparent conductive electrode and its interface with the a-Si:H layer.

Fantoni, A., Vieira Martins M. R. "Modelling heteroface of P.I.N solar cells for improving stability." Materials Research Society Symposium Proceedings. Vol. 336. 1994. 711-716. Abstract

The introduction into a traditional p.i.n structure of two defective buffer layers near the p/i and i/n interfaces can improve the device stability and efficiency through an enhancement of the electric field profile at the interfaces and a reduction of the available recombination bulk centers. The defectous layer ("i′-layer"), grown at a higher power density, present a high density of defects and acts as "gettering centers" able to tailor light induced defects under degradation conditions. If the i-layer density of states remains below 1016 eV-1 cm-3 and assuming a Gaussian distribution of defect states, the gettering center distribution will not affect significantly the carrier population but only its spatial distribution. We report here about a device numerical simulation that allows us to analyse the influence of the "i′-layer" position, thickness and density of states on the a-Si: H solar cells performances. Results of some systematic simulation from the ASCA program (Amorphous Solar Cell Analysis), and for different configurations will be presented. © 1994 Materials Research Society.

Fortunato, E., Lavareda Vieira Martins G. M. R. "Thin film position sensitive detector based on amorphous silicon p-i-n diode." Review of Scientific Instruments. 65 (1994): 3784-3786. AbstractWebsite

The application of hydrogenated amorphous silicon (a-Si:H) to optoelectronic devices are now well established as a viable low cost technology and is presently receiving much interest. Taking advantage of the properties of a-Si:H based devices, single and dual axis large area (up to 80×80 mm 2) thin film position sensitive detectors (TFPSD) based on a-Si:H p-i-n diodes have been developed, produced by plasma enhanced chemical vapor deposition. In this study, the main optoelectronic properties presented by the TFPSD as well as their behavior under operation conditions, concerning its linearity and signal to noise ratio, are reported. © 1994 American Institute of Physics.

1993
Fortunato, E., Vieira Ferreira Carvalho Lavareda Martins M. L. C. "Large area position sensitive detector based on amorphous silicon technology." Materials Research Society Symposium Proceedings. Vol. 297. 1993. 981-986. Abstract

We have developed a rectangular dual-axis large area Position Sensitive Detector (PSD), with 5 cm×5 cm detection area, based on PIN hydrogenated amorphous silicon (a-Si:H) technology, produced by Plasma Enhanced Chemical Vapor Deposition (PECVD). The metal contacts are located in the four edges of the detected area, two of them located on the back side of the ITO/PIN/Al structure and the others two located in the front side. The key factors of the detectors resolution and linearity are the thickness uniformity of the different layers, the geometry and the contacts location. Besides that, edge effects on the sensor's corner disturb the linearity of the detector. In this paper we present results concerning the linearity of the detector as well as its optoelectronic characteristics and the role of the i-layer thickness on the final sensor performances.

Fortunato, E.a, Vieira Lavareda Ferreira Martins M. a G. a. "Material properties, project design rules and performances of single and dual-axis a-Si:H large area position sensitive detectors." Journal of Non-Crystalline Solids. 164-166 (1993): 797-800. AbstractWebsite

We have developed large area (up to 80mm×80mm) Thin Film Position Sensitive Detectors (TFPSD) based on hydrogenated amorphous silicon (a-Si:H). Although crystalline silicon PSDs have been realized and applied to optical systems, their detection area is small (less than 10mm×10mm), which implies the need of optical magnification systems for supporting their field of applications towards large area inspection systems, which does not happen by using a-Si:H devices. The key factors for the TFPSDs resolution are the thickness uniformity of the constituting layers, the geometry and the position of the contacts. In this paper we present data on single and dual-axis rectangular TFPSDs correlating, their performances with the different underlying lateral effects. For the single axis-detector, with two opposite extended contacts, the output photocurrent difference to sum ratio is a linear function of the position of a narrow incident light beam, even for low illumination levels (below 20 lux). For the dual-axis detector with extended contacts, at all four sides (except for small gaps at the vertices due to edge effects) an almost linear relation has been found between the incident light spot position along both axis and the corresponding output photocurrents. © 1993.

1989
Fortunato, E., Martins Ferreira Santos Maçarico Guimarães R. I. M. "Tunneling in vertical μcSi/aSixCyOz:H/μcSi heterostructures." Journal of Non-Crystalline Solids. 115 (1989): 120-122. AbstractWebsite

In this paper we report by the first time tunneling tranport on vertical μcSi/aSixCyOz:H/μcSi (μcaμc) heterostructures produced in a Two consecutive Decomposition and Deposition Chamber system where a Negative Differential Conductance is observed even at room temperature. Giant bias anomalies are observed, that decrease with temperature. Tunneling spectroscopy data are also reported for samples measured at low temperatures. A qualitative information of the recorded data is obtained and related with main features of the heterostructure. Nevertheless in this stage is hard to take quantitative information. © 1989.

loading