Coauthored Publications with: Chastre

Journal Article

Biscaia, HC, Chastre C, Silva MAG.  2013.  A smeared crack analysis of reinforced concrete T-beams strengthened with GFRP composites, 11//. Engineering Structures. 56:1346-1361. AbstractWebsite

The strengthening of reinforced concrete structures with laminates of fibre reinforced polymeric (FRP) matrix has received considerable attention, although there still is lack of information on the more adequate modelling of the interface between FRP composites and concrete. An experimental programme is described and was designed to: (i) characterise glass FRP-to-concrete interface by shear tests; (ii) analyse reinforced concrete T-beams with external GFRP plates. Double shear tests were carried out based on 15 cm cubes with GFRP bonded to two opposite faces. The concrete T-beams were 3.0 m long and 0.28 m high and were loaded till rupture in 4-point bending tests. The external reinforcement system showed great strength increment in relation to the non retrofitted T-beam, confirming to be an effective approach to the flexural strengthening of RC beams. The computational analysis was based on a three dimensional smeared crack model. In total, 22 computational analyses were made. Models with and without interface FE associated with Mohr–Coulomb failure criterion for the FRP-to-concrete interface were defined and different strength types of concrete were considered. The rigid interface does not predict the rupture of the T-beam with precision; however, the results obtained for low concrete strengths revealed that rigid interfaces can be assumed when conjugated with the fixed crack approach. Consequently, a slightly stiffer response of the beam is obtained. The maximum bond stresses obtained from Finite Element Analysis (FEA) revealed that the models with rigid interfaces developed lower bond stresses due to the lack of relative displacements between both materials. The effects of assuming either fixed or rotated crack approaches were also compared. The rotated crack conjugated to a fine mesh in the vicinity of the GFRP-to-concrete stress led to a very good estimation of the bond stresses along the interface. The prediction of the T-beam rupture was also estimated with better results when the rotated crack was used in the model. In general, the FEA predicted with very good results the de-bonding of the GFRP-to-concrete interface of T-beams externally bonded with GFRP composites.

Biscaia, H, Chastre C, Silva C, Franco N.  2018.  Mechanical Response of Anchored FRP bonded joints: A Nonlinear Analytical Approach. Mechanics of Advanced Materials and Structures. Abstract

The paper presents a nonlinear analytical solution for the prediction of the full-range debonding response of mechanically-anchored FRP composites from the substrate. The nonlinear analytical approach predicts, for any monotonic loading history or bonded length the relative displacements (or slips) between materials, the strains in the FRP composite, the bond stresses within the interface and the stresses developed in the substrate. The load-slip responses FRP-to-substrate interfaces with a short and a long bonded lengths are motive of analysis and discussion. The solutions obtained from the proposed approach are also compared with other experimental results found in the literature.

Heidari, M, Chastre C, Torabi-Kaveh M, Ludovico-Marques M, Mohseni H.  2017.  Application of fuzzy inference system for determining weathering degree of some monument stones in Iran. Journal of Cultural Heritage. 25:41-55. Abstract

This paper presents a comparative evaluation of efficiencies of different accelerated ageing tests (freezethaw, thermal shock, salt crystallization, dissolution and wetting-drying) and fuzzy inference system in predicting weathering degrees of some monument stones from three historical sites (Anahita Temple, Anobanini reliefs and Eshkaft-e Salman reliefs, Iran). The combined effects of natural weathering processes (heating and cooling, wetting and drying, and freezing and thawing) and climatic information were used for assessing the natural weathering degrees. Finally, the natural weathering degrees were multiplied by time effect coefficients to obtain more realistic natural weathering degrees of the monuments. The predicted natural weathering degrees for Anahita Temple, Anobanini reliefs and Eshkaft-e Salman reliefs are 56%, 61%, and 47%, respectively. These predicted values reasonably support the weathering degrees defined by progressive decay indices (calculated equal to 2.77, 3.42 and 2.66 for Anahita Temple, Anobanini reliefs and Eshkaft-e Salman reliefs, respectively), which means the fuzzy model potentially could accurately predict the weathering of stones.

Pacheco, J, de Brito J, Chastre C, Evangelista L.  2019.  Experimental investigation on the variability of the main mechanical properties of concrete produced with coarse recycled concrete aggregates, 2019/03/20/. Construction and Building Materials. 201:110-120. AbstractWebsite

Research on the variability of the properties of recycled aggregate concrete is lacking and is necessary for the development of reliability analyses and code calibration procedures. This paper presents an experimental programme on the within-batch variability of the compressive strength, Young’s modulus, and splitting tensile strength of several recycled and natural aggregate concrete mixes. The influence of the recycled concrete aggregates on the mechanical properties and variability of concrete is analysed and discussed and benchmarks with standard predictions for the variability of natural aggregate concrete are made. It was found that full recycled aggregate concrete incorporation did not increase the variability of any of the properties tested, but intermediate ratios of recycled aggregate incorporation did. The properties of high-strength concrete mixes were more variable than that of all other mixes, irrespective of recycled aggregate incorporation. All properties of all compositions were suitably modelled by normal distributions. The coarse recycled aggregates were sourced from concrete waste.

Marques, PF, Chastre C.  2012.  Performance analysis of load–strain models for circular columns confined with FRP composites. Composite Structures. 94:3115-3131., Number 11 Abstractmarques__chastre_2012.pdfWebsite

The use of FRP composites for the confinement of concrete has become an important aspect to consider on strengthening of concrete columns. It is important therefore that accurate modelling tools are available for the design of this system considering, not only the peak values of load and strain, but also the complete stress–strain behaviour. A wide group of authors have proposed several models specific for FRP-confined concrete based either on theoretical assumptions (analysis-oriented-models – AOMs) or on mathematical calibration from testing results (design-oriented-models – DOMs). This article carries out the implementation and analysis of nine existing models for circular concrete columns in view of axially tested reinforced concrete columns confined with CFRP with three different diameters: 150; 250 and 400 mm. The global shape of curves, peak compressive load, stress–strain relation, axial-to-lateral relation and dilation response were studied to conclude which models’ curves were closer to tests. Quantification of errors in face of the testing results was carried out for the most important parameters – ultimate load, strain and lateral stress – as well as for other curve parameters. Some models are accurate in predicting the peak load, though only few can accurately predict the load–strain and dilation behaviour.

Biscaia, HEC, Silva MG, Chastre C.  2009.  Caracterização Experimental e Modelação Numérica da Ligação GFRP/BETÃO. Mecânica Experimental. :9-18., Number 16 Abstractbiscaia2009sich.pdfWebsite

Analisa-se e caracteriza-se por via experimental a ligação entre elementos de betão armado e materiais compósitos, nomeadamente com base nas fibras de vidro. Fabricaram-se vigas de betão armado que foram exteriormente reforçadas com GFRP. Os resultados obtidos experimentalmente foram comparados com os resultados conseguidos por intermédio de modelação computacional, recorrendo-se ao programa de cálculo ATENA 2D. Para melhor modelação de elementos de interface, foram realizados ensaios de corte tendo-se obtido valores que permitiram caracterizar a lei de rotura de Mohr-Coulomb. Os parâmetros estudados foram a evolução das forças máximas absorvidas pelo reforço; as tensões de aderência máximas; a distribuição das tensões de aderência.

Biscaia, HC, Micaelo R, Teixeira J, Chastre C.  2014.  Delamination process analysis of FRP-to-parent material bonded joints with and without anchorage systems using the Distinct Element Method. Composite Structures. 116(September–October):104–119. AbstractWebsite

This study looks at the analysis of the interface between Fiber Reinforced Polymer (FRP)-to-parent material bonded interfaces. The performance of FRP-to-parent material bonded joints for the Externally Bonded Reinforcement (EBR) technique is numerically modelled with the PFC2D software which is based on the Distinct Element Method (DEM). It is believed that this represents the first time the DEM has been used to simulate the delamination process of FRP-to-parent material bonded joints. In order to validate the analysis performed with the DEM, a Pull-out test with no slip constrains was modelled and different linear bond-slip laws were assumed. The numerical results revealed that the DEM is capable of estimating with good accuracy the exact solutions of bond stresses, strains or slippages along the bonded length for linear bond-slip laws. The bi-linear law available in PFC2D was then compared to the numerical results obtained from other another code developed by the author. The delamination process of Pull-out tests with slip constrain at one of the free ends of the FRP plate is also described and analyzed. The results obtained from the DEM revealed that the delamination process ends with stiffness equal to the axial stiffness of the FRP plate. This evidence highlights the need to design mechanical anchor devices capable of preventing premature debonding which is known to occur on EBR systems.

Faustino, P, Chastre C.  2015.  Analysis of load–strain models for RC square columns confined with CFRP, June 2015. Composites Part B: Engineering. 74:23-41. AbstractWebsite

This article presents the comparison between 6 theoretical models of axially confined concrete columns with the experimental results of 7 tested columns of different authors. This study analysed the accuracy of 6 different confinement models for square columns taking into account the results of experimental tests on 7 RC columns confined with CFRP sheets with different dimensions and carried out by different authors. The profile of curves, the peak/failure values, the stress–strain and axial–to–lateral relations were studied to conclude which models show the best correlation with the experimental test results. Quantification of this deviation was carried out for key parameters. Some models predicted peak values with reasonable accuracy – Manfredi & Realfonzo, Campione & Miraglia, Lam & Teng, Pellegrino & Modena – although for the whole load–strain behaviour only the model of Faustino, Chastre & Paula seemed to be reasonably accurate in most cases.

Yang, Y, Silva MAG, Biscaia H, Chastre C.  2019.  Bond durability of CFRP laminates-to-steel joints subjected to freeze-thaw, 2019/03/15/. Composite Structures. 212:243-258. AbstractWebsite

The degradation mechanisms of bonded joints between CFRP laminates and steel substrates under severe environmental conditions require more durability data and studies to increase the database and better understand their causes. Studies on bond properties of double-strap CFRP-to-steel bonded joints with two different composite materials as well as adhesive coupons subjected to freeze-thaw cycles for 10,000 h were conducted to reduce that gap. In addition, the equivalent to the number of thermal cycles and their slips induced in the CFRP laminates was replicated by an equivalent (mechanical) loading-unloading history condition imposed by a static tensile machine. The mechanical properties of the adhesive coupons and the strength capacity of the bonded joints were only slightly changed by the artificial aging. It was confirmed that the interfacial bond strength between CFRP and adhesive is critically related to the maximum shear stress and failure mode. The interfacial bond strength between adhesive and steel degraded with the aging. However, the equivalent thermal cyclic bond stress caused no detectable damage on the bond because only the interfacial elastic regime was actually mobilized, which confirmed that pure thermal cycles aging, per se, at the level imposed, have a low impact on the degradation of CFRP-to-steel bonded joints.

Biscaia, HC, Chastre C, Viegas A, Franco N.  2015.  Numerical modelling of the effects of elevated service temperatures on the debonding process of frp-to-concrete bonded joints. Composites Part B: Engineering. 70:64-79. AbstractWebsite

There are many issues concerning the performance behaviour of FRP-to-concrete interfaces at elevated service temperatures (EST). At EST, i.e. slightly above the glass transition temperature (Tg), some properties associated with the FRP composites, such as the stiffness, strength or the bond characteristics, degrade. This is a crucial issue and there are only a few studies that take into account such effects on FRP-to-concrete interfaces at EST. This paper examines, through a numerical analysis, the performance of FRP-to-concrete bonded joints at EST using a new discrete model based on truss elements and shear springs. The External Bonded Reinforcement (EBR) systems subjected to EST are analyzed. The numerical discrete model was implemented in a MATLAB routine and the bond-slip curves of the interfaces at EST were obtained from a model found in literature. The numerical results revealed that the interface at EST behaves similarly to one with two equal mechanical loads applied at both ends of the FRP plate. The load-slip curves or bond stresses, strains or slippages along the bonded length obtained from several bond-slip curves at different temperatures were obtained. Two different single-lap shear tests were simulated at steady-state (steady temperature followed by load increase) and transient state (steady load followed by temperature increase). Regarding the influence of the temperature on the adhesion between the FRP and concrete, the results showed that an increase in the temperature at an earlier situation, i.e. during a period where temperature had no influence in the concrete deformations, leads to an increase in the effective bond length of the interface affecting the initial strength of the interface.

Biscaia, HC, Borba IS, Silva C, Chastre C.  2016.  A Nonlinear Analytical model to predict The full-range debonding process of FRP-to-parent material interfaces free of any mechanical anchorage devices, 15 March 2016. Composite Structures. 138:52-63. AbstractWebsite

Ever since Fibre Reinforced Polymers (FRP) began to be used in the repair or strengthening of structural elements, the premature debonding of the FRP composite from the substrate has been an important drawback that have been motive of several studies. The importance of knowing and describing the full-range behaviour of FRP-to-parent material interfaces rigorously is therefore urgent. However, at present, there are no analytical solutions that describe the full-range behaviour of such interfaces that help us to understand the full debonding phenomena of FRP-to-parent material interfaces free of any mechanical anchorage devices. Therefore, the aim of this study is to contribute the advances of that knowledge through an analytical solution by means of an exponential bond-slip model that is known to represent the nonlinearities involved in the debonding process of the FRP composite from the substrate. Analytical solutions for the slips, strains in the FRP composite, bond stress distributions along the bonded interface and stresses in the substrate are presented. A full-range load-slip analysis is also discussed.

Larrinaga, P, Chastre C, San-José JT, Garmendia L.  2013.  Non-linear analytical model of composites based on basalt textile reinforced mortar under uniaxial tension, 12//. Composites Part B: Engineering. 55:518-527. AbstractWebsite

The recent development of inorganic based composites as low-cost materials in reinforced concrete structural strengthening and precast thin-walled components, requires the creation of models that predict the mechanical behaviour of these materials. Textile Reinforced Mortar (TRM) shows complex stress–strain behaviour in tension derived from the heterogeneity of its constituent materials. This complexity is mainly caused by the formation of several cracks in the inorganic matrix. The multiple cracking leads to a decrease in structural stiffness. Due to the severe conditions of the serviceability limit state in structural elements, the prediction of the stress–strain curve is essential for design and calculation purposes. After checking other models, an empirical nonlinear approach, which is based on the crack control expression included in the Eurocode 2, is proposed in this paper. Following this scope, this paper presents an experimental campaign focused on 31 TRM specimens reinforced with four different reinforcing ratios. The results are analysed and satisfactorily contrasted with the presented non-linear approach.

Faustino, P, Frade P, Chastre C.  2016.  Lateral cyclic behaviour of RC columns confined with carbon fibres, February 2016. Structures. 5:196-206. AbstractWebsite

Reinforced concrete (RC) columns with various strengthening systems and different conditions were tested to cyclic lateral and axial loading for the purpose of performance assessment. Tests included confinement strengthening with carbon-fiber-reinforced polymer (CFRP) sheets, longitudinal strengthening with CFRP laminates and confining CFRP jacket, longitudinal strengthening with stainless steel bars and confining CFRP jacket, tested column until reinforcing steel failure, repair and CFRP confining jacket, and longitudinal strengthening with stainless steel bars. The analysis of the tests results as to load-displacement relationship and energy dissipation led to the conclusion that the use of external longitudinal strengthening with CFRP confinement is effective for performance retrofitting and upgrading, and viable in terms of execution. The load capacity increase due to strengthening reached 36–46% with good ductile behaviour. Nonlinear numerical modelling was carried out using two approaches which represent reasonably well the global performance of the studied columns for the prediction of the ascending load-displacement relationship and the peak load values in each cycle.

Heidari, M, Torabi-Kaveh M, Chastre C, Ludovico-Marques M, Mohseni H, Akefi H.  2017.  Determination of weathering degree of the Persepolis stone under laboratory and natural conditions using fuzzy inference system. Construction and Building Materials. 145:28-41. Abstract

Weathering imposes vital effects on stony monuments. Mostly, the degree of weathering is determined by simple test results, ignoring simultaneous effects of various weathering factors. Hence, the main purpose of this study is to develop prediction models with fuzzy inference systems to determine the weathering degree of the Persepolis stone, using various accelerated ageing tests in laboratory condition and to extrapolate the results to the natural condition, considering climatic information. The results suggest reliable conformity between the prediction of the weathering degree of the stone and the weathering degree observed in the Persepolis complex in natural condition.

Pacheco, J, de Brito J, Chastre C, Evangelista L.  2019.  Uncertainty models of reinforced concrete beams in bending: code comparison and recycled aggregate incorporation, 2019/04/01. Journal of Structural Engineering. 145:04019013., Number 4 AbstractWebsite

The bias factor of the Eurocode 2 [CEN (European Committee for Standardization) (2008). Eurocode 2: Design of ConcreteStructures–Part 1-1: General Rules and Rules for Buildings] and ACI 318 [ACI (American Concrete Institute) (2014). Building CodeRequirements for Structural Concrete and Commentary] flexural resistance models of reinforced concrete beams are compared withemphasis on the effect of the incorporation of coarse recycled aggregates sourced from concrete waste. The bias factor of the yielding momentcalculations according to both codes is also investigated, and the bias in the cracking moment when Eurocode 2 material clauses are used. Thedatabase was composed of 174 beams, and the criteria that led to its development are discussed. The effect of recycled aggregate incorporationon the statistical descriptors of the bias factor is evaluated and probabilistic modeling using lognormal distributions is argued for. Preliminarypartial safety factors for the bias factor of recycled aggregate concrete beams are proposed. No significant differences in the bias of theultimate moment were found between the two comparison vectors: Eurocode 2 versus ACI 318 specifications and recycled versus naturalcoarse aggregate. The bias of the cracking moment increased when coarse recycled aggregates were incorporated, most probably due to thehigher heterogeneity of recycled aggregates.

Biscaia, HC, Silva MAG, Chastre C.  2014.  An experimental study of GFRP-to-concrete interfaces submitted to humidity cycles, 4//. Composite Structures. 110(April):354-368. AbstractWebsite

Systems externally reinforced by bonded fibre reinforced polymers (FRP) are widely used in the retrofitting and strengthening of reinforced concrete (RC) structures. A drawback of the usage of this technique lies on the uncertainty of the long term behaviour of those reinforcements. Researchers have paid heed to this aspect and a number of tests and alternative techniques have recently been described. An experimental programme developed to supplement work of the authors recently published and which focused on specimens not submitted to aggressive environments is described. The specimens used have the same geometry as in the previous paper, but they were exposed to salt fog cycles and dry/wet cycles with salt water for periods of 3000 h, 5000 h and 10,000 h. The interface of the glass fiber polymeric composite (GFRP)-to-concrete was characterized after the systems underwent such aggressive conditions. The GFRP wrap comprised of two layers and wet lay-up technique was used on its preparation and application. The cohesion and friction angle for GFRP-to-concrete interfaces were measured tat selected stages of ageing process and envelope failure laws were obtained based on the Mohr–Coulomb failure criterion. Changes of 27% in cohesion and 8% in the friction angle were found due to the attack of the interface and consequences of the changes are examined.

Biscaia, H, Silva MAG, Chastre C.  2016.  Influence of external compressive stresses on the performance of GFRP-to-concrete interfaces subjected to aggressive environments: An experimental analysis. Journal of Composites for Construction . 20(2):04015044. AbstractWebsite

Despite the fact that FRP composites are a reliable structural material with reasonable durability performance, the environment to which the strengthened structure is exposed can make the strengthening system vulnerable. In this study, the effectiveness of Externally Bonded Reinforcement (EBR) systems when external compressive stresses are applied to glass (G) FRP-to-concrete interfaces in several aggressive environments is analysed. The compressive stress imposed on the GFRP-to-concrete interface intends to simulate, for instance, the effect produced by a mechanical anchorage system applied to the EBR system. The design and the region to set those mechanical anchorage systems are not yet well understood and are mostly applied without really knowing how they will behave. This work shows an exhaustive experimental programme based on several double shear tests subjected to salt fog cycles, dry/wet cycles and two distinct temperature cycles: from -10ºC to +30ºC and +7.5ºC to +47.5ºC. The Mohr-Coulomb failure criterion was found to provide a good representation of the performance of the GFRP-to-concrete interface, and changes of cohesion and internal friction angle of those interfaces during the hours of exposure to the aggressive environments are reported.

Biscaia, H, Cardoso J, Chastre C.  2017.  A Finite Element Based Analysis of Double Strap Bonded Joints with CFRP and Aluminium. Key Engineering Materials. 754:237-240. Abstract
Yang, Y, Biscaia H, Silva MAG, Chastre C.  2019.  Monotonic and quasi-static cyclic bond response of CFRP-to-steel joints after salt fog exposure, 2019/07/01/. Composites Part B: Engineering. 168:532-549. AbstractWebsite

Deterioration of adhesively bonded CFRP/steel systems in salt fog environment, i.e., deicing salts and ocean environments, has to be taken into account in the design of steel strengthened structures. In the present work, monotonic and quasi-static cyclic loading were applied to CFRP-to-steel double strap joints for two kinds of CFRP laminates after being aged for a period of 5000 h to evaluate the bond behavior. The bonded joints exposed to salt fog had a different failure mode than that observed in the control specimens (0 h of exposure). The severe reduction of the maximum bond stress resulted from damage initiation that occurred in the corrosion region of the steel substrate, associated with final partial rupture on the corroded steel substrate around the edge of the bonded area: it was also correlated with reduced load carrying capacity. Results of pseudo-cyclic tests showed that the relationship between a local damage parameter (D) and normalized local dissipated energy (Wd/Gf) and the normalized slip increment (ΔS/ΔSult) exhibited almost the same trend in the un-aged and aged bonded joints. The normalized slip increment can be seen as a direct indicator for the local and global damage for the un-aged and aged bonded joints. However, monotonic and quasi-static cyclic tests results revealed that the stress concentration due to local corrosion of steel substrate could lead to brittle rupture or accelerated cumulative damage once the aged bonded interface had become weaker. The bonded joints have exhibited also a smaller relative deformation capacity between CFRP and steel.

Biscaia, HC, Micaelo R, Teixeira J, Chastre C.  2014.  Numerical analysis of FRP anchorage zones with variable width, 11//. Composites Part B: Engineering. 67:410-426. AbstractWebsite

The use of Fibre Reinforced Polymers (FRP) has recently become widespread in the construction industry. However, some drawbacks related to premature debonding of the FRP composites from the bonded substrates have been identified. One of the solutions proposed is the implementation of mechanical anchorage systems. Although some design guidelines have been developed, the actual knowledge continues to be rather limited. Thus, designers and researchers have not yet achieved any consensus on the efficiency of any particular anchor device in delaying or preventing the premature debonding failure mode that can occur in Externally Bonded Reinforcement (EBR) systems. This paper studies the debonding phenomenon of FRP anchoring systems with a linear variable width, with a numerical analysis based on the Distinct Element Method (DEM). Combined systems with constant and variable width are also discussed. The FRP-to-parent material interfaces are modelled with a rigid-linear softening bond–slip law. The numerical results showed that it is possible to attain the FRP rupture force with a variable width solution. This solution is particularly attractive when the bonded length is shorter than the effective bonded length because the strength of the interface can be highly incremented.

Biscaia, H, Franco N, Nunes R, Chastre C.  2016.  Old suspended timber floors flexurally-strengthened with different structural materials. Key Engineering Materials. 713:78-81. Abstract

The design of timber beams has strict limits when it comes to the Serviceability Limit States (SLS) either in short-term or in long-term deflections. In order to face this aspect efficiently, the increase of the cross section of the beams might be considered as a solution. However, the prohibitive increase of the costs associated to this solution or the change of the initial architecturedesign of the building, opens the opportunity to find new and more efficient solutions. In that way, the use of additional reinforcements to the timber beams may be seen as a promising solution because either new or old structures would keep always their original aesthetical aspect with no significant self-weight increase and improving their behaviour to short and long-term actions.Therefore, the current study is dedicated to the analysis of composite timber beams where Fiber Reinforcement Polymers (FRP), steel or stainless steel are used to improve the stiffness, strength and deflection behaviour of old suspended timber floors. An experimental program was conducted where old suspended timber floors reinforced with CFRP strips were subjected to 4-point bending tests. A simplify nonlinear numerical model was developed to simulate the bending behaviour of the specimens and several other cases with other reinforcement configurations and different structural materials were assumed. The numerical analysis herein presented also takes into account both Ultimate and Serviceability Limit States of the reinforced specimens.

Biscaia, HC, Chastre C.  2018.  Design method and verification of steel plate anchorages for FRP-to-concrete bonded interfaces, 5/15/. Composite Structures. 192:52-66. AbstractWebsite

Concrete structures Externally Bonded Reinforced (EBR) with Fibre Reinforced Polymers (FRP) have been studied and used since the end of the last century. However, several issues need to be better studied in order to improve performance. The influence of size of anchorage plates used on Reinforced Concrete (RC) structures strengthened with EBR FRP composites, the external compressive stress to be applied on the anchorage plate and the numerical simulation of this region are some of the topics that need to be more carefully studied in order to clarify the performance of the FRP-to-concrete interface within the anchorage plate region. This study proposes a design methodology to estimate the amount of external compressive stress necessary to be applied on the anchorage plate of EBR systems with FRP composites, in order to avoid premature debonding. The external compressive stress imposed on the FRP composite is intended to simulate the effect produced by a mechanical anchorage system tightened to the EBR system. The results from the design proposal, when compared with the numerical ones, were efficient enough on the prediction of the bond strength improvement of FRP-to-concrete interfaces.

Monteiro, A, Chastre C, Biscaia H, Franco N.  2017.  Reforço de vigas em betão armado com armaduras exteriores de FRP, Jan. 2017. Revista Internacional TechITT. 15:48-60., Number 40 AbstractWebsite

A utilização de Polímeros Reforçados com Fibras (FRP) no reforço de estruturas de Betão Armado (BA) tem tido cada vez mais aceitação devido à sua elevada resistência e rigidez, baixo peso específico e excelente resistência aos efeitos dos agentes ambientais. No entanto, actualmente, é comum utilizarem-se técnicas de reforço que dificilmente permitem tirar partido da resistência total destes materiais. Com o objectivo de explorar a capacidade total de Polímeros Reforçados com Fibras de Carbono (CFRP), foram estudadas e desenvolvidas duas novas técnicas de reforço de vigas à flexão designadas por Continuous Reinforcement Embedded at Ends (CREatE) e Horizontal Near Surface Mounted Reinforcement (HNSMR). Posteriormente realizou-se um estudo comparativo entre o desempenho destes sistemas de reforço e o de duas outras técnicas já estudadas e usuais, nomeadamente os sistemas Externally Bonded Reinforcement (EBR) e Near Surface Mounted Reinforcement (NSMR). A técnica CREatE provou ser a mais eficaz de todas as alternativas testadas mobilizando a totalidade do compósito de CFRP e dotando as vigas de BA com uma maior capacidade resistente e com uma ductilidade mais elevada.Como complemento deste trabalho experimental, desenvolveu-se também um programa de cálculo em MATLAB, capaz de simular o problema em estudo através de um modelo numérico de análise não linear através do equilíbrio de secções. A representatividade dos dados obtidos foi verificada através de uma análise comparativa entre os valores numéricos e os obtidos experimentalmente.The use of Fiber Reinforced Polymers (FRP) in order to strengthen Reinforced Concrete (RC) structures has been increasingly accepted due to their strength and stiffness, low weight and excellent resistance to the effects of environmental aggressive agents. However, the bonding techniques available and described in the literature can not allow the full use of the mechanical properties of these materials and premature failures are often observed and described by several researchers. In order to explore the full capacity of CFRP composites, two new bonding strengthening techniques of RC beams when subjected to 4-point bending tests were studied and developed. For these new techniques, the designation of Continuous Reinforcement Embedded at Ends (CREatE) and Horizontal Near Surface Mounted Reinforcement (HNSMR) has been assigned. Posteriorly, a comparative study has been carried out between those strengthening systems performance and two traditional techniques, namely, the Externally Bonded Reinforcement (EBR) and Near Surface Mounted Reinforcement (NSMR). The CREatE technique has proved to be the most effective of all alternatives tested, with the full utilization of the CFRP composite and the highest strength, combined with the highest ductility. A code using MATLAB software was developed as a complement of this experimental work, which is able to simulate the problem under study through a nonlinear numerical model based on the equilibrium of sections. The representativeness of the numerical data has been verified afterwards through a comparative analysis between those and the experimental results.

Silva, MAG, Biscaia H, Chastre C.  2013.  Influence of Temperature Cycles on Bond between GFRP and Concrete. ACI Structural Journal. 110(6):977-988. AbstractWebsite

Reinforced concrete (RC) beams externally strengthened with glass fiber-reinforced polymer (GFRP) strips bonded to the soffit may see their load-carrying capacity reduced due to environmental conditions—especially due to the deterioration of bond between the adhesively bonded laminates and concrete, causing premature failure.
More research has been published on the detachment of the laminate progressing from the anchorage zone than on failure induced by the formation of flexural or shear-flexural cracks in the midspan followed by fiber-reinforced polymer (FRP) separation and failure designated as intermediate crack (IC) debonding. An experimental program to study degradation of the GFRP laminate beam specimens after accelerated temperature cycles, namely: 1) freezing-and-thawing type; and 2) cycles of the same amplitude (40°C [104°F]) and an upper limit approximately 70% of the glass vitreous transition temperature of the resin, Tg, is described.
Effects on the bond stress and ultimate capacity are reported. Substantial differences between shear and bending-induced failure and a decrease of bond stresses and engagement of the laminates on the structural response are analyzed.

Faustino, P, Chastre C, Nunes Â, Brás A.  2016.  Lifetime modelling of chloride induced corrosion in reinforced concrete structures with concrete with portland and blended cements, 2016. Structure and Infrastructure Engineering. 12:1013-1023., Number 9 AbstractWebsite

This article discusses mathematical modelling of the long-term performance of concrete with different supplementary cementitious materials in a maritime environment. The research was carried out in the light of the national Portuguese application of the CEN standards with mandatory requirements for a performance-based design approach. Laboratory investigations were performed on concrete compositions based on CEM I and CEM II/B-L in which the cement was partially replaced by either 0% (reference composition) or 50% of low calcium fly ash (FA). Concrete compositions were made with the objective to achieve service lives of 50 and 100 years with regard to steel corrosion. Test results of compressive strength, chloride potential diffusion and electrical resistivity are reported for different curing ages of 28, 90, 180 and 365 days. Chloride diffusion results were used for the implementation of modelling equations in order to estimate the design lifetime regarding reinforcing steel corrosion. A performance-based approach using a probabilistic method was carried out and the results obtained are compared with the requirements according to the Portuguese prescriptive approach. The modelling results show that FA blended compositions have better performance compared to those with Portland cements, especially if curing ages beyond 28 days are considered.