Numerical analysis

Showing results in 'Publications'. Show all posts
Factors influencing the performance of externally bonded reinforcement systems of GFRP-to-concrete interfaces, Biscaia, Hugo C., Silva Manuel A. G., and Chastre Carlos , Materials and Structures, 2014/06/29, Volume 48, Issue 9, p.2961-2981, (2015) AbstractWebsite

Fibre reinforced polymer (FRP) composites may prematurely debond from the surface of concrete, i.e. before its elastic resistance is exhausted. This is a very common situation and can be aggravated if additional factors are not taken into account. These factors include the type of surface preparation, the exposure to aggressive environmental action, the tensile concrete strength or fatigue and creep loading to which the structural element may be subject. An experimental programme based on double shear tests was undertaken to analyse the influence of some of these factors on the performance of the interface between composite glass fibres (GFRP) and concrete. The results allowed the determination and comparison of maximum loads transmitted to the GFRP plates and maximum bond stresses obtained considering various surface treatments and aging conditions. Bond–slip curves were also determined. The experimental results are compared with those obtained from a numerical analysis.

Numerical modelling of the effects of elevated service temperatures on the debonding process of frp-to-concrete bonded joints, Biscaia, Hugo C., Chastre Carlos, Viegas André, and Franco Noel , Composites Part B: Engineering, Volume 70, p.64-79, (2015) AbstractWebsite

There are many issues concerning the performance behaviour of FRP-to-concrete interfaces at elevated service temperatures (EST). At EST, i.e. slightly above the glass transition temperature (Tg), some properties associated with the FRP composites, such as the stiffness, strength or the bond characteristics, degrade. This is a crucial issue and there are only a few studies that take into account such effects on FRP-to-concrete interfaces at EST. This paper examines, through a numerical analysis, the performance of FRP-to-concrete bonded joints at EST using a new discrete model based on truss elements and shear springs. The External Bonded Reinforcement (EBR) systems subjected to EST are analyzed. The numerical discrete model was implemented in a MATLAB routine and the bond-slip curves of the interfaces at EST were obtained from a model found in literature. The numerical results revealed that the interface at EST behaves similarly to one with two equal mechanical loads applied at both ends of the FRP plate. The load-slip curves or bond stresses, strains or slippages along the bonded length obtained from several bond-slip curves at different temperatures were obtained. Two different single-lap shear tests were simulated at steady-state (steady temperature followed by load increase) and transient state (steady load followed by temperature increase). Regarding the influence of the temperature on the adhesion between the FRP and concrete, the results showed that an increase in the temperature at an earlier situation, i.e. during a period where temperature had no influence in the concrete deformations, leads to an increase in the effective bond length of the interface affecting the initial strength of the interface.

Linear and nonlinear analysis of bond-slip models for interfaces between FRP composites and concrete, Biscaia, Hugo C., Chastre Carlos, and Silva Manuel A. G. , Composites Part B: Engineering, Volume 45, Number 1, p.1554-1568, (2013) AbstractWebsite

The paper analyses different analytical and numerical solutions for the debonding process of the FRP-to-concrete interface on shear tests with the FRP plate submitted to a tensile load in one of its ends. From the point of view of the state of the art, two different ways of finding the bond-slip curve from experiments are discussed and analysed. Essentially, three different linear bond-slip models, one exponential model and another power based function are employed in the numerical process. The results are analysed and compared. The differences found in the stress field along the interface, maximum load, maximum slip, ultimate slip, fracture energy and effective bond length are reported. The load-slip behaviour is also presented for the linear and non-linear models herein studied and the influence of the local bond-slip model on the debonding process is discussed. The numerical integration process used on the present study proved to be coherent with the analytical expressions determined for the linear bond-slip models and allowed to verify that maximum load transmittable to the FRP plate is influenced by the square root of the FRP stiffness and fracture energy even when nonlinear bond-slip models are assumed.

Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfaces, Biscaia, Hugo C., Chastre Carlos, and Silva Manuel A. G. , Composites Part B: Engineering, Volume 50, p.210-223, (2013) AbstractWebsite

The paper analyses numerical solutions for the process leading to debonding failure of fiber reinforced polymers (FRP)-to-concrete interfaces in shear tests with the FRP plate subjected to a tensile load at one end. Any realistic local nonlinear bond-slip law can be used in the numerical analysis proposed in the present study. However, only a Popovics’ type expression is employed in the numerical process due to its use in different studies found in the literature. Effective bond length (Leff) is discussed and an expression depending on the Popovics’ constant (nP) is proposed to calculate it. Assuming a fracture in pure Mode II, the debonding process is analyzed in detail and distributions of bond stresses and strains in the FRP plate along the interface are presented. The load-displacement behaviour is also presented and the influence of the local bond-slip law on the debonding process is discussed.