FRP Composites
Mechanical Response of Anchored FRP bonded joints: A Nonlinear Analytical Approach,
Biscaia, Hugo, Chastre Carlos, Silva Cinderela, and Franco Noel
, Mechanics of Advanced Materials and Structures, (2018)
AbstractThe paper presents a nonlinear analytical solution for the prediction of the full-range debonding response of mechanically-anchored FRP composites from the substrate. The nonlinear analytical approach predicts, for any monotonic loading history or bonded length the relative displacements (or slips) between materials, the strains in the FRP composite, the bond stresses within the interface and the stresses developed in the substrate. The load-slip responses FRP-to-substrate interfaces with a short and a long bonded lengths are motive of analysis and discussion. The solutions obtained from the proposed approach are also compared with other experimental results found in the literature.
Flexural Behaviour of RC T-Beams Strengthened with Different FRP Materials,
Carvalho, Tiago, Chastre Carlos, Biscaia Hugo, and Paula Raquel
, The Third International fib Congress and Exhibition "Think Globally, Build Locally", , Washington DC, (2010)
AbstractThe strengthening of reinforced concrete structures with FRP materials has received a
considerable increment in recent years due to the high strength-weight and stiffness-weight
ratios of FRP compared to other materials.
An experimental programme was conducted in order to analyse the behaviour of different
structural solutions to strengthen reinforced concrete beams with FRP composites (EBR
GFRP, EBR CFRP, NSRM-CFRP) and is described. The RC T beams had a 3m span by 0.3m
height and were tested until rupture in a 4-point bending test system.
The NSMR technique has proved to be the most effective of the three alternatives tested, as it
obtained high strength, combined with high ductility. Nevertheless, all the systems show
great strength increment in relation to the non retrofitted T-beams, proving to be effective
approaches to the flexural strengthening of RC beams.
Comportamento às acções cíclicas de pilares de betão armado reforçados com materiais compósitos,
Chastre Rodrigues, C.
, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, (2005)
AbstractThis thesis deals with the analysis of the behaviour of retrofitting reinforced concrete circular columns with FRP materials which were subjected either to axial cyclic compression or axial compression and alternated cyclic horizontal loads. The choice of this topic derived from the need to investigate the behaviour of the strengthening of reinforced concrete columns to seismic actions, especially with new materials such as carbon and glass fibres or polymeric mortars. Another reason for such choice is linked to the strong seismicity of the Portuguese territory.
It has been verified that confined concrete columns with FRP jackets have their resistance and ductility highly increased as these considerably reduce the columns transversal deformation, thus preventing the buckling of longitudinal reinforcement. There has been an increasing use of FRP composites in the strengthening of structures, mainly with GFRP (Glass Fibre Reinforced Plastics) or CFRP (Carbon Fibre Reinforced Plastics). This is due to their attractive characteristics such as high resistance to corrosion, lowratio for weight/strength, moldability, easy application and the fact that there is no need of support structures.
Forty-five experimental tests were carried out, dealing with retrofitting reinforced concrete columns with axial monotonic or cyclic compression reinforced with FRP composites. The column height of 750 mm was maintained in order to evaluate the influence of several parameters in its behaviour: the column geometry (change in its diameter), the type of column (plain or reinforced concrete), transversal reinforcement ratio of concrete columns, the type of external confinement with FRP (C or GFRP), the number of FRP layers and the type of axial loading (monotonic or cyclic).
Twelve additional experimental tests were conducted in order to analyse the behaviour of reinforced concrete columns jacketed with FRP composites and subjected to axial cyclic compression and alternated cyclic horizontal loads. The columns’ dimension was maintained (1500 mm height by 250 mm diameter) and the models were subjected to a series of cyclic and alternated loadings. This enabled the study of the various parameters’ influence in their behaviour such as the type of FRP confinement, the number of FRP layers, the level of axial loading, the jacket’s height or the strengthening of the plastic hinge by replacing the cover concrete with polymeric mortar.
Based on the numerical models presented and experimental analysis carried out, models were proposed and developed to simulate the behaviour of columns jacketed with FRP composites.