Coauthored Publications with: Chastre

Journal Article

Biscaia, HC, Cruz D, Chastre C.  2016.  Analysis of the debonding process of CFRP-to-timber interfaces, 6/15/. Construction and Building Materials. 113:96-112. AbstractWebsite

The use of Fiber Reinforced Polymers (FRP) in the strengthening of timber structures is quite recent and few studies have discussed the debonding between these materials. The analysis of the Mode II debonding process between FRP composites and timber elements may be of great importance because this mode is predominant in the case, for instance, of the bending of beams. Knowing the appropriate bond-slip model to use on the estimation of the performance of FRP-to-timber interfaces is greatly relevant. Under such circumstances, a detailed knowledge of all the states that CFRP-to-timber interfaces are subjected to is important as well. The current work gives answers to these aspects proposing an analytical solution based on a tri-linear bond-slip model that is capable of describing precisely the full-range debonding behavior of FRP-to-timber interfaces. Thus, the purpose of this study is to contribute to existing knowledge with an analytical solution capable of describing the full-range debonding process between a FRP composite and a substrate. The analytical solutions herein proposed are also compared with the results obtained from several experiments based on single-lap shear tests. Comparisons at different load levels and different bonded lengths are presented. The slips, strains in the CFRP composite and bond stress distributions within the bonded interface are emphasized in the text. The complete load-slip response of CFRP-to-timber interface is also analyzed. Each state of the debonding process is described and each one is identified in the load-slip curve.

Biscaia, H, Micaelo R, Chastre C, Cardoso J.  2018.  Cyclic loading behaviour of double strap bonded joints with CFRP and aluminium. Key Engineering Materials . Abstract

The adhesively bonded joints behaviour under cyclic loading is not yet well understood due to its inherent complexity. Numerical approaches appear, therefore, as the easiest way to simulate such mechanical behaviour. In this work, double strap bonded joints with Carbon Fibres Reinforced Polymers (CFRP) and aluminium are numerically simulated and subjected to a cyclic loading history. In the numerical simulation, the Distinct Element Method (DEM) is used and it is assumed cohesive bi-linear bond-slip models with local damage of the interface. The evaluation of the bonded joints under cyclic loading is made by comparing the results with those simulated with a monotonic loading.

Marques, PF, Chastre C.  2012.  Performance analysis of load–strain models for circular columns confined with FRP composites. Composite Structures. 94:3115-3131., Number 11 Abstractmarques__chastre_2012.pdfWebsite

The use of FRP composites for the confinement of concrete has become an important aspect to consider on strengthening of concrete columns. It is important therefore that accurate modelling tools are available for the design of this system considering, not only the peak values of load and strain, but also the complete stress–strain behaviour. A wide group of authors have proposed several models specific for FRP-confined concrete based either on theoretical assumptions (analysis-oriented-models – AOMs) or on mathematical calibration from testing results (design-oriented-models – DOMs). This article carries out the implementation and analysis of nine existing models for circular concrete columns in view of axially tested reinforced concrete columns confined with CFRP with three different diameters: 150; 250 and 400 mm. The global shape of curves, peak compressive load, stress–strain relation, axial-to-lateral relation and dilation response were studied to conclude which models’ curves were closer to tests. Quantification of errors in face of the testing results was carried out for the most important parameters – ultimate load, strain and lateral stress – as well as for other curve parameters. Some models are accurate in predicting the peak load, though only few can accurately predict the load–strain and dilation behaviour.

Biscaia, HC, Chastre C, Silva MAG.  2013.  A smeared crack analysis of reinforced concrete T-beams strengthened with GFRP composites, 11//. Engineering Structures. 56:1346-1361. AbstractWebsite

The strengthening of reinforced concrete structures with laminates of fibre reinforced polymeric (FRP) matrix has received considerable attention, although there still is lack of information on the more adequate modelling of the interface between FRP composites and concrete. An experimental programme is described and was designed to: (i) characterise glass FRP-to-concrete interface by shear tests; (ii) analyse reinforced concrete T-beams with external GFRP plates. Double shear tests were carried out based on 15 cm cubes with GFRP bonded to two opposite faces. The concrete T-beams were 3.0 m long and 0.28 m high and were loaded till rupture in 4-point bending tests. The external reinforcement system showed great strength increment in relation to the non retrofitted T-beam, confirming to be an effective approach to the flexural strengthening of RC beams. The computational analysis was based on a three dimensional smeared crack model. In total, 22 computational analyses were made. Models with and without interface FE associated with Mohr–Coulomb failure criterion for the FRP-to-concrete interface were defined and different strength types of concrete were considered. The rigid interface does not predict the rupture of the T-beam with precision; however, the results obtained for low concrete strengths revealed that rigid interfaces can be assumed when conjugated with the fixed crack approach. Consequently, a slightly stiffer response of the beam is obtained. The maximum bond stresses obtained from Finite Element Analysis (FEA) revealed that the models with rigid interfaces developed lower bond stresses due to the lack of relative displacements between both materials. The effects of assuming either fixed or rotated crack approaches were also compared. The rotated crack conjugated to a fine mesh in the vicinity of the GFRP-to-concrete stress led to a very good estimation of the bond stresses along the interface. The prediction of the T-beam rupture was also estimated with better results when the rotated crack was used in the model. In general, the FEA predicted with very good results the de-bonding of the GFRP-to-concrete interface of T-beams externally bonded with GFRP composites.

Biscaia, H, Chastre C, Silva C, Franco N.  2018.  Mechanical Response of Anchored FRP bonded joints: A Nonlinear Analytical Approach. Mechanics of Advanced Materials and Structures. Abstract

The paper presents a nonlinear analytical solution for the prediction of the full-range debonding response of mechanically-anchored FRP composites from the substrate. The nonlinear analytical approach predicts, for any monotonic loading history or bonded length the relative displacements (or slips) between materials, the strains in the FRP composite, the bond stresses within the interface and the stresses developed in the substrate. The load-slip responses FRP-to-substrate interfaces with a short and a long bonded lengths are motive of analysis and discussion. The solutions obtained from the proposed approach are also compared with other experimental results found in the literature.

Heidari, M, Chastre C, Torabi-Kaveh M, Ludovico-Marques M, Mohseni H.  2017.  Application of fuzzy inference system for determining weathering degree of some monument stones in Iran. Journal of Cultural Heritage. 25:41-55. Abstract

This paper presents a comparative evaluation of efficiencies of different accelerated ageing tests (freezethaw, thermal shock, salt crystallization, dissolution and wetting-drying) and fuzzy inference system in predicting weathering degrees of some monument stones from three historical sites (Anahita Temple, Anobanini reliefs and Eshkaft-e Salman reliefs, Iran). The combined effects of natural weathering processes (heating and cooling, wetting and drying, and freezing and thawing) and climatic information were used for assessing the natural weathering degrees. Finally, the natural weathering degrees were multiplied by time effect coefficients to obtain more realistic natural weathering degrees of the monuments. The predicted natural weathering degrees for Anahita Temple, Anobanini reliefs and Eshkaft-e Salman reliefs are 56%, 61%, and 47%, respectively. These predicted values reasonably support the weathering degrees defined by progressive decay indices (calculated equal to 2.77, 3.42 and 2.66 for Anahita Temple, Anobanini reliefs and Eshkaft-e Salman reliefs, respectively), which means the fuzzy model potentially could accurately predict the weathering of stones.

Pacheco, J, de Brito J, Chastre C, Evangelista L.  2019.  Experimental investigation on the variability of the main mechanical properties of concrete produced with coarse recycled concrete aggregates, 2019/03/20/. Construction and Building Materials. 201:110-120. AbstractWebsite

Research on the variability of the properties of recycled aggregate concrete is lacking and is necessary for the development of reliability analyses and code calibration procedures. This paper presents an experimental programme on the within-batch variability of the compressive strength, Young’s modulus, and splitting tensile strength of several recycled and natural aggregate concrete mixes. The influence of the recycled concrete aggregates on the mechanical properties and variability of concrete is analysed and discussed and benchmarks with standard predictions for the variability of natural aggregate concrete are made. It was found that full recycled aggregate concrete incorporation did not increase the variability of any of the properties tested, but intermediate ratios of recycled aggregate incorporation did. The properties of high-strength concrete mixes were more variable than that of all other mixes, irrespective of recycled aggregate incorporation. All properties of all compositions were suitably modelled by normal distributions. The coarse recycled aggregates were sourced from concrete waste.

Biscaia, HEC, Silva MG, Chastre C.  2009.  Caracterização Experimental e Modelação Numérica da Ligação GFRP/BETÃO. Mecânica Experimental. :9-18., Number 16 Abstractbiscaia2009sich.pdfWebsite

Analisa-se e caracteriza-se por via experimental a ligação entre elementos de betão armado e materiais compósitos, nomeadamente com base nas fibras de vidro. Fabricaram-se vigas de betão armado que foram exteriormente reforçadas com GFRP. Os resultados obtidos experimentalmente foram comparados com os resultados conseguidos por intermédio de modelação computacional, recorrendo-se ao programa de cálculo ATENA 2D. Para melhor modelação de elementos de interface, foram realizados ensaios de corte tendo-se obtido valores que permitiram caracterizar a lei de rotura de Mohr-Coulomb. Os parâmetros estudados foram a evolução das forças máximas absorvidas pelo reforço; as tensões de aderência máximas; a distribuição das tensões de aderência.

Biscaia, HC, Micaelo R, Teixeira J, Chastre C.  2014.  Delamination process analysis of FRP-to-parent material bonded joints with and without anchorage systems using the Distinct Element Method. Composite Structures. 116(September–October):104–119. AbstractWebsite

This study looks at the analysis of the interface between Fiber Reinforced Polymer (FRP)-to-parent material bonded interfaces. The performance of FRP-to-parent material bonded joints for the Externally Bonded Reinforcement (EBR) technique is numerically modelled with the PFC2D software which is based on the Distinct Element Method (DEM). It is believed that this represents the first time the DEM has been used to simulate the delamination process of FRP-to-parent material bonded joints. In order to validate the analysis performed with the DEM, a Pull-out test with no slip constrains was modelled and different linear bond-slip laws were assumed. The numerical results revealed that the DEM is capable of estimating with good accuracy the exact solutions of bond stresses, strains or slippages along the bonded length for linear bond-slip laws. The bi-linear law available in PFC2D was then compared to the numerical results obtained from other another code developed by the author. The delamination process of Pull-out tests with slip constrain at one of the free ends of the FRP plate is also described and analyzed. The results obtained from the DEM revealed that the delamination process ends with stiffness equal to the axial stiffness of the FRP plate. This evidence highlights the need to design mechanical anchor devices capable of preventing premature debonding which is known to occur on EBR systems.

Faustino, P, Chastre C.  2015.  Analysis of load–strain models for RC square columns confined with CFRP, June 2015. Composites Part B: Engineering. 74:23-41. AbstractWebsite

This article presents the comparison between 6 theoretical models of axially confined concrete columns with the experimental results of 7 tested columns of different authors. This study analysed the accuracy of 6 different confinement models for square columns taking into account the results of experimental tests on 7 RC columns confined with CFRP sheets with different dimensions and carried out by different authors. The profile of curves, the peak/failure values, the stress–strain and axial–to–lateral relations were studied to conclude which models show the best correlation with the experimental test results. Quantification of this deviation was carried out for key parameters. Some models predicted peak values with reasonable accuracy – Manfredi & Realfonzo, Campione & Miraglia, Lam & Teng, Pellegrino & Modena – although for the whole load–strain behaviour only the model of Faustino, Chastre & Paula seemed to be reasonably accurate in most cases.

Yang, Y, Silva MAG, Biscaia H, Chastre C.  2019.  Bond durability of CFRP laminates-to-steel joints subjected to freeze-thaw, 2019/03/15/. Composite Structures. 212:243-258. AbstractWebsite

The degradation mechanisms of bonded joints between CFRP laminates and steel substrates under severe environmental conditions require more durability data and studies to increase the database and better understand their causes. Studies on bond properties of double-strap CFRP-to-steel bonded joints with two different composite materials as well as adhesive coupons subjected to freeze-thaw cycles for 10,000 h were conducted to reduce that gap. In addition, the equivalent to the number of thermal cycles and their slips induced in the CFRP laminates was replicated by an equivalent (mechanical) loading-unloading history condition imposed by a static tensile machine. The mechanical properties of the adhesive coupons and the strength capacity of the bonded joints were only slightly changed by the artificial aging. It was confirmed that the interfacial bond strength between CFRP and adhesive is critically related to the maximum shear stress and failure mode. The interfacial bond strength between adhesive and steel degraded with the aging. However, the equivalent thermal cyclic bond stress caused no detectable damage on the bond because only the interfacial elastic regime was actually mobilized, which confirmed that pure thermal cycles aging, per se, at the level imposed, have a low impact on the degradation of CFRP-to-steel bonded joints.

Magazine Article

Chastre, C.  2018.  Ductilidade e resistência no reforço de pilares de betão armado sem aumento de secção, Março/Abril de 2. Construção Magazine. 84:48-49., Number Março/Abril AbstractWebsite

O aumento da resistência e/ou da ductilidade é um objetivo primordial quando se procede ao reforço de pilares. Um método bastante eficaz de aumentar a ductilidade, particularmente em regiões sísmicas, é através do encamisamento com coletes de FRP, uma vez que esta técnica permite uma diminuição da deformação transversal do pilar e a limitação da encurvadura das armaduras longitudinais, aumentando consequentemente a ductilidade do mesmo. Diversos ensaios experimentais permitiram detetar que os incrementos são maiores em secções circulares do que em secções quadradas ou retangulares [1, 2]. A atenuação deste efeito é obtida através do arredondamento dos cantos nos pilares de secção retangular. Contudo, o encamisamento com coletes de FRP, por si só, não aumenta significativamente a resistência do pilar à flexão composta. Para que isso aconteça e se mantenha um nível elevado de ductilidade, é necessário adicionar armaduras longitudinais à armadura do pilar e posteriormente proceder ao encamisamento com colete de FRP. Uma forma muito eficiente de o conseguir, mantendo a seção transversal do pilar, é utilizando o sistema CREatE (Continuous Reinforcement Embedded at Ends) desenvolvido na Universidade NOVA e já anteriormente apresentado nesta coluna, na edição de Junho/Agosto de 2017 [3], para o caso do reforço de vigas. O sistema CREatE foi idealizado para ser utilizado com diversos materiais e diferentes elementos estruturais [4-7], em que é necessário aumentar a sua capacidade resistente através de armaduras pós-instaladas, caracterizando-se pela utilização de armaduras contínuas embutidas nas extremidades do elemento estrutural sem o uso de dispositivos mecânicos para as fixar. Antes da ancoragem da armadura de reforço no interior do elemento, é necessário utilizar uma curva de transição suave para alterar a forma da armadura de reforço e evitar a ocorrência de concentrações de tensões na armadura ou na interface [4, 7, 8]. Este conceito foi aplicado no reforço de pilares realizado no âmbito da tese de doutoramento de Faustino Marques [9].Na Figura 1 é possível observar dois pilares de seção retangular (20x40cm2) encamisados com coletes de 3 camadas de CFRP (200gr/m2) em que foi utilizado o sistema CREatE com armaduras pós-instaladas de aço inox (2x20x5mm2) ou de laminados de CFRP (2x(10+20)×1.4 mm2/face) para reforço longitudinal [7, 8]. Na Figura 2 pode observar-se os resultados dos ensaios experimentais de um conjunto de pilares de seção retangulares sujeitos a esforço axial e a ações horizontais cíclicas. O pilar P11 é o de referência pois, não foi reforçado, enquanto os pilares P12, P15 e P16 foram encamisados com coletes de 3 camadas de CFRP e nos pilares P15 e P16 foi utilizado adicionalmente o sistema CREatE com armaduras pós-instaladas de aço inox (P15) ou de laminados de CFRP (P16) para reforço longitudinal [7]. Na Figura 3 mostra-se a envolvente dos diagramas Força-Deslocamento dos ensaios dos diferentes pilares de seção retangular (P11; P12; P15 e P16), sendo possível de constatar um excelente desempenho não só em termos de ductilidade (incremento de 67%) como de resistência (incrementos entre 29% e 43%, para drifts entre 2 e 4%) dos pilares reforçados com o sistema CREatE relativamente ao pilar de referência não reforçado.

Lúcio, V, Chastre C.  2014.  Precast concrete wind tower structures. Historic development, current development and future potential, June 2014. CPI - Concrete Plant International, 3. :110-115., Number 3 Abstractcpi_03-2014_p144-149.pdfWebsite

The wind energy production is a growing industry and the energy produced is renewable and environmentally cleaner than most of the energy production systems. The supports of the wind energy generators may be built with precast concrete elements. The precast solutions for these structures are competitive in comparison to other structural systems. The evolution of the technology for wind energy production shows a clear need for larger wind turbines and longer blades and, consequently, taller towers. The experience also shows that precast concrete solutions increase their competitiveness as the tower height increases. Offshore wind farms have some advantages in relation to onshore ones, which explains recent investments in this area. Also in this case, the durability of concrete in the sea when compared to steel, gives advantages to precast concrete in relation to other structural solutions. This paper shows the evolution of the supports of the wind energy generators and the advantages of the use of precast concrete towers.

Chastre, C.  2017.  CREatE, um sistema inovador de reforço estrutural utilizando compósitos de CFRP, Novembro/Dezembr. Construção Magazine. 80(Julho/Agosto):46-47., Number Novembro/Dezembro AbstractWebsite

A procura de soluções de reforço mais duráveis e de fácil aplicação tem levado à utilização crescente dos compósitos de FRP (Fiber Reinforced Polymer) no reforço de estruturas, dada a sua resistência à corrosão, o baixo quociente peso/resistência mecânica, a sua moldabilidade, a facilidade de aplicação e a eliminação de estruturas de suporte. No reforço estrutural de vigas de betão armado com compósitos de FRP, são tradicionalmente utilizados dois tipos de técnicas: os sistemas em que o laminado é colado pelo exterior (EBR - Externally-Bonded Reinforcement) ou aqueles em que o laminado é inserido em rasgos previamente abertos na camada de recobrimento (NSM - Near Surface Mounted). No entanto, as técnicas utilizadas, o comportamento elástico-linear destes materiais e as roturas tendencialmente frágeis das soluções condicionam a sua utilização em estruturas onde se pretende alguma ductilidade. A técnica de reforço NSM apresenta algumas vantagens em relação à técnica EBR, nomeadamente ao nível da proteção das armaduras [1]. Além disso, o desempenho em termos de ductilidade do sistema e resistência final excede a técnica EBR. Contudo, diversos ensaios experimentais [2-5] têm mostrado que roturas prematuras [6] da ligação na interface ou o destacamento do betão na zona do recobrimento entre a face inferior das armaduras ordinárias e as armaduras de reforço podem limitar significativamente a eficiência do sistema, originando modos de rotura frágeis e desperdício de material por falta de otimização da quantidade de material aplicado [1]. A fim de evitar a rotura prematura das soluções de reforço tradicionais (EBR e NSM), foi concebido na Universidade NOVA um sistema inovador de reforço intitulado CREatE (Continuous Reinforcement Embedded at Ends). O sistema CREatE foi idealizado para ser utilizado com diversos materiais [1, 5] e diferentes elementos estruturais, tais como vigas [1, 3], pilares [7], pavimentos [8], lajes ou paredes, em que é necessário aumentar a sua capacidade resistente através de armaduras pós-instaladas. A solução de reforço CREatE caracteriza-se pela utilização de armaduras contínuas embutidas nas extremidades do elemento estrutural sem o uso de dispositivos mecânicos para as fixar. Antes da ancoragem da armadura de reforço no interior do elemento, é necessário utilizar uma curva de transição suave para al terar a forma da armadura de reforço e evitar a concentração de tensões no la minado de CFRP (Carbon Fiber Reinforced Polymer) ou na interface e, desta forma, ter um fluxo gradual de tensões transmitidas à zona de ancoragem existente no interior do elemento. Para validar a solução CREatE foi realizada uma campanha de ensaios à flexão de vigas de betão armado com seção em T, uma altura total de 0,3m, um vão livre de 3,0m e reforçadas com laminados de CFRP recorrendo a diferentes técnicas (EBR, NSM e CREatE). As vigas foram testadas à flexão em 4 pontos, tendo-se obtido resultados promissores (Figura 1), com a eliminação na técnica CREatE dos modos de rotura prematuros. Na Figura 2 é possível observar uma viga ensaiada com a técnica CREatE em que se detetam aberturas de fendas significativas sem que se verifique qualquer rotura prematura do sistema. Além da eliminação dos modos de rotura prematuros, os ensaios comprovam que a técnica CREatE permite o incremento da ductilidade (Figura 1) e a exploração total da capacidade do CFRP [1, 3, 5].

Chastre, C.  2018.  Construção, inovação e pré-fabricação em betão, Novembro/Dezembr. Construção Magazine. 88:59-61., Number Novembro/Dezembro AbstractWebsite

Num mundo em constante mutação, as próximas décadas na indústria da construção serão, certamente, muito influenciadas pelos desenvolvimentos nas áreas dos materiais, da informática, do processamento de dados, da industrialização e da automação. A pré-fabricação em betão é, hoje em dia, uma forma de construção segura, económica, durável, sustentável e arquitetonicamente versátil. Trata-se de uma forma industrializada de construção com diversas vantagens, pois permite incorporar, de forma mais rápida, económica, adequada e sustentável, a inovação em materiais, sistemas e processos.A produção em fábrica significa processos de fabrico racionais e eficientes, controlo de qualidade, trabalhadores qualificados, repetição de tarefas, e menor custo de mão-de-obra por m² devido à automação do processo de produção. Deste modo, a industrialização da construção transfere a maioria dos trabalhos do local da obra para a fábrica. As distâncias máximas de transporte por camião deverão variar entre 150 e 350 km, dependendo do tipo de produtos e da rede viária, podendo, em algumas situações, o transporte ser feito por comboio ou por navio, caso em que as distâncias máximas podem aumentar até 2.000 km [3]. Dependendo da acessibilidade do local e da capacidade do sistema de elevação, o processo de montagem em obra deverá ser discutido no início do projeto. Em termos de sustentabilidade, a indústria de pré-fabricação a nível europeu está apostada na redução de 45% de matérias-primas e de 30% do consumo energético. Várias fábricas já reciclam o betão não utilizado e em breve funcionarão num sistema de produção fechado, em que todo os resíduos serão processados e reutilizados [3]. No futuro, o betão pré-fabricado será por excelência o veículo preferido para a introdução dos agregados reciclados na indústria de construção, dado o controlo de qualidade a que é sujeito. O controlo de qualidade na pré-fabricação começa no estudo e preparação do projeto, e continua com a produção das peças de betão e com a entrega e montagem a tempo e horas. O controlo de qualidade durante o processo de fabrico é baseado em quatro pilares fundamentais: pessoas, instalações e equipamentos, matérias-primas e processos de execução, e controlo de qualidade da execução. A maioria das empresas de pré-fabricação possui a certificação ISO-9000.As caraterísticas das estruturas pré-fabricadas permitem adaptá-las, na maioria das situações, às exigências do arquiteto ou do dono de obra, não existindo antagonismo entre a elegância arquitetónica e o aumento da eficiência estrutural (Figura 1). Atualmente, industrialização já não significa um número elevado de peças de betão idênticas, pelo contrário, um processo de produção eficiente pode ser combinado com a mão-de-obra qualificada existente na fábrica, o que permite desenvolver um projeto de arquitetura moderno e sem custos adicionais. A utilização de vãos grandes, sem restrições a possíveis subdivisões com paredes divisórias, permite a flexibilidade do espaço, adaptando-o às necessidades do utilizador, tal como é exigido nos edifícios de escritórios. Quer no passado quer atualmente, a maioria dos edifícios tradicionais são concebidos para uma utilização específica, sem atender a futuras alterações de uso e consequentes remodelações ou demolições. Para obviar a esta desvantagem, a solução passa por fazer uma distinção clara entre a parte estrutural dos edifícios e os acabamentos, possibilitando, desta forma, futuras remodelações sem demolição da estrutura do edifício. Hoje as estruturas pré-fabricadas em betão já são concebidas de acordo com este conceito, dada a capacidade existente nas vigas e pavimentos para vencerem grandes vãos, o que facilita a criação de grandes espaços abertos no interior do edifício. As caraterísticas das lajes alveoladas permitem que as redes de instalações sejam aí incorporadas, e, além disso, pode-se tirar partido da massa térmica do betão da laje para armazenar energia térmica. Os elementos pré-fabricados de betão possibilitam uma ampla variedade de acabamentos, desde superfícies cuidadosamente moldadas até ao betão à vista. Deste modo, o arquiteto dispõe de painéis de fachada, vigas e pilares com formas especiais e com acabamentos de alta qualidade (Figura 2). Além disso, o projetista pode inspecionar e aceitar as peças pré-fabricadas antes de serem transportadas e fixadas no local. Os painéis em betão arquitetónico oferecem uma ampla gama de acabamentos, numa grande variedade de cores e texturas, por exemplo em calcário ou granito, ou através de acabamentos mais complexos em tijoleiras cerâmicas ou em alvenaria de pedra natural ou artificial que seriam extremamente caros se aplicados in situ pelos métodos tradicionais. A pré-fabricação, comparativamente à construção in situ, tem um maior potencial para apresentar estruturas mais económicas, melhor desempenho estrutural e maior durabilidade por causa da otimização dos materiais utilizados, a qual é obtida tendo por base as matérias-primas, os equipamentos de fabricação utilizados e os procedimentos de trabalho cuidadosamente estudados. Os trabalhos de pré-fabricação utilizam equipamento de dosagem e mistura controlados por computador, bem como aditivos e adjuvantes na mistura para obter os desempenhos mecânicos pretendidos. A betonagem e a vibração do betão são realizadas com condições de trabalho e equipamentos ideais. O teor de água pode ser reduzido ao mínimo e a cura também ocorre em circunstâncias controladas. A classe do betão utilizada pode ser adequada às exigências de cada tipo de elemento, de forma a otimizar o uso de materiais mais caros. O betão pré-fabricado oferece uma liberdade de ação considerável para a melhoria da eficiência estrutural, permitindo produtos mais esbeltos e um uso otimizado dos materiais. Maiores vãos e menores alturas úteis podem ser obtidos através da utilização do pré-esforço em vigas e pavimentos. O pré-esforço é frequentemente utilizado na pré-fabricação devido às pistas de pré-tensão existentes e aos fios de pré-esforço serem ancorados por aderência. O betão pré-fabricado pré-esforçado proporciona todas as vantagens construtivas do betão pré-esforçado, mas também a economia na fabricação, devido à reduzida mão-de-obra e à ausência de dispositivos de ancoragem dispendiosos. Outra vantagem do betão pré-fabricado é a melhoria da durabilidade. Contudo, os melhores benefícios são obtidos para os elementos verticais, especialmente para os pilares, onde a capacidade de carga pode aumentar entre 100% a 150% quando a resistência do betão passa de 30 para 90 MPa [3]. As estruturas pré-fabricadas em betão armado e pré-esforçado apresentam, normalmente, uma resistência ao fogo de 60 a 120 minutos ou mais [3]. Atualmente os betões de alto desempenho já são utilizados em algumas estruturas pré-fabricadas e no futuro próximo, em especial em zonas com alguma agressividade ambiental, o betão pré-fabricado verá as armaduras de aço substituídas por armaduras de matérias compósitos. O desempenho das estruturas pré-fabricadas tem sido analisado face a sismos de diferentes intensidades, tendo a maioria registado um bom desempenho, enquanto outras, em especial as mais antigas, mostraram algumas deficiências. A investigação a nível internacional dai resultante, tem sido particularmente útil para melhorar a pormenorização das ligações das estruturas pré-fabricadas, bem como para avaliar a ductilidade geral destas estruturas (que mostrou ser bastante comparável à das estruturas construídas in situ), ajudando assim a definir fatores de comportamento adequados [4].Na última década a Comissão 6 da pré-fabricação, da Federação Internacional do Betão (fib) publicou um conjunto de relatórios técnicos [1-5] sobre edifícios pré-fabricados, dedicados em especial às ligações estruturais [1], às ações acidentais [2], aos painéis sandwich [5], ao projeto de estruturas pré-fabricadas em geral [3] e ao projeto de edifícios em zonas sísmicas [4], onde estes temas são abordados em detalhe e que podem ser uma mais-valia para todos os que se queiram dedicar a esta temática.


Chastre, C, Mendonça P.  2019.  2nd International Conference on Building Materials and Materials Engineering - ICBMM 2018, September 26-28,. 278:168., Lisbon, Portugal: MATEC Web of Conferences Abstract


Almeida, G, Melicio F, Chastre C, Fonseca J.  2011.  Displacement measurements with ARPS in T-beams load tests. 349 AICT:286-293. Abstract

The measurement of deformations, displacements, strain fields and surface defects in many material tests in Civil Engineering is a very important issue. However, these measurements require complex and expensive equipment and the calibration process is difficult and time consuming. Image processing could be a major improvement, because a simple camera makes the data acquisition and the analysis of the entire area of the material under study without requiring any other equipment like in the traditional method. Digital image correlation (DIC) is a method that examines consecutive images, taken during the deformation period, and detects the movements based on a mathematical correlation algorithm. In this paper, block-matching algorithms are used in order to compare the results from image processing and the data obtained with linear voltage displacement transducer (LVDT) sensors during laboratorial load tests of T-beams. © 2011 IFIP International Federation for Information Processing.

Chastre, C, Mendonça P.  2017.  2017 International Conference on Building Materials and Materials Engineering - ICBMM 2017, September 21-23,. 264:159., Lyon, France: IOP Conference Series: Materials Science and Engineering Abstract
Salcedo Hernández, JC, Fortea Luna M, Lauria A, Rovero L, Tonietti U, Chastre C, González Jiménez L, Matas Casco M, Saumell Lladó J.  2017.  Cáceres-Florencia, patrimonio vivo: Ensayos técnico-arquitectónicos. Suplementos de Investigación en Construcciones Arquitectónicas . 3(Salcedo, José-Carlos, Ed.).:156., Cáceres: Grupo de Investigación de Construcciones Arquitectónicas de la Universidad de Extremadura Abstract