Publications

Export 575 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
I
Nunes, P.a, Malik Fernandes Fortunato Vilarinho Martins A. a B. a. "Influence of the doping and annealing atmosphere on zinc oxide thin films deposited by spray pyrolysis." Vacuum. 52 (1999): 45-49. AbstractWebsite

Undoped and doped (indium and aluminium) zinc oxide (ZnO) thin films have been prepared by spray pyrolysis, and the effect of the doping and annealing atmosphere on the electrical, optical and structural properties of the produced films has been investigated. The deposited films have a high resistivity. Annealing the films in an argon atmosphere or under vacuum leads to a substantial reduction of the electrical resistivity of the films and to an increase on the degree of cristallinity of the deposited material. The most pronounced changes were observed in the films annealed in Argon. The results also indicate that doping highly influences the electrical and structural properties of the films, which is more pronounced in the films doped with Indium. © 1998 Elsevier Science Ltd. All rights reserved.

Wang, J.c, Sallet Amiri Rommelluere Lusson Rzepka Lewis Galtier Fortunato Martins Gorochov V. a G. a. "Influence of the ex-situ and in-situ annealed self-buffer layer on ZnO film." Physica Status Solidi C: Conferences. Vol. 3. 2006. 1010-1013. Abstract

Two self-buffer layers were grown on c-plane sapphire substrates by atmospheric MOCVD method using DEZn, tert-butanol as precursors and H 2 as carrier gas. Then, they were respectively annealed in growth process and oxygen environment. After that, ZnO films were respectively grown on them. XRD spectra show that all the films were grown in [002] orientation. Furthermore, the film with a buffer layer annealed in oxygen exhibits much higher crystal quality. Its FWHM of the rocking curve is only 567arcsec. Furthermore, its Raman scattering spectrum appears a much stronger E2 mode peak at 436cm-1 and its PL spectrum appears a shoulder at 3.367eV on the higher energy side. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA,.

Ferreira, I., Aguas Mendes Fernandes Fortunato Martins H. L. F. "Influence of the H2 dilution and filament temperature on the properties of P doped silicon carbide thin films produced by hot-wire technique." Materials Research Society Symposium - Proceedings. Vol. 507. 1999. 831-836. Abstract

This work deals with the role of hydrogen dilution and filament temperature on the morphology, structure and electrical properties of nanocrystalline boron doped silicon carbide thin films produced by hot-wire technique. The structural and morphological data obtained by XRD, SEM and micro-Raman show that for filament temperatures and hydrogen dilutions above 2100 °C and 90%, respectively, the surface morphology of the films is granular with a needle shape, while for lower filament temperatures and hydrogen dilutions the surface morphology gets honeycomb like. The SIMS analysis reveals that films produced with filament temperatures of about 2200 °C and hydrogen dilution of 99% present a higher hydrogen and carbon incorporation than the films produced at lower temperatures and hydrogen dilutions. These results agree with the electrical and optical characteristics recorded that show that the films produced exhibit optical gaps in the range from 1.8 to 2 eV and transverse conductivities ranging from 10-1 S/cm to 10-3 S/cm, consistent with the degree of films crystallinity and carbon incorporation recorded.

Fantoni, A.a b, Viera Martins M. a R. b. "Influence of the intrinsic layer characteristics on a-Si:H p-i-n solar cell performance analysed by means of a computer simulation." Solar Energy Materials and Solar Cells. 73 (2002): 151-162. AbstractWebsite

In this paper a set of one-dimensional simulations of a-Si:H p-i-n junctions under different illumination conditions and with different intrinsic layer are presented. The simulation program ASCA permits the analysis of the internal electrical behaviour of the cell allowing a comparison among the different internal configurations determined by a change in the input set. Results about the internal electric configuration will be presented and discussed outlining their influence on the current tension characteristic curve. Considerations about the drift-diffusion and the generation-recombination balance distributions, outlined by the simulation, can be used to explain the correlation between the basic device output, the i-layer characteristics (thickness and DOS), the incident radiation intensity and photon energy. © 2002 Elsevier Science B.V. All rights reserved.

Raniero, L., Martins Canhola Zhang Pereira Ferreira Fortunato Martins N. P. S. "Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell." Solar Energy Materials and Solar Cells. 87 (2005): 349-355. AbstractWebsite

The aim of this work is to present data concerning the optimization of performances of a large area amorphous silicon p-i-n solar cell (30×40 cm2) deposited by plasma enhanced chemical vapour deposition (PECVD) at 27.12 MHz. In this work the solar cell was split into small areas of 0.126 cm2, aiming to study the device performance uniformity, where emphasis was put on the role of the n-layer thickness. The solar cells were studied through the spectral response behaviour in the 400-750 nm range as well as by the behaviour of the AC impedance. Solar cells with fill factor of 0.58, open circuit voltage of 0.83 V, short circuit current density of 17.14 mA/cm2 and an efficiency of 8% were obtained at growth rates higher than 0.3 nm/s. © 2004 Elsevier B.V. All rights reserved.

Gaspar, D.a, Pimentel Mateus Leitão Soares Falcão Araújo Vicente Filonovich Águas Martins Ferreira A. C. a T. "Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation." Scientific Reports. 3 (2013). AbstractWebsite

Metallic nanoparticles (NPs) have received recently considerable interest of photonic and photovoltaic communities. In this work, we report the optoelectronic properties of gold NPs (Au-NPs) obtained by depositing very thin gold layers on glass substrates through thermal evaporation electron-beam assisted process. The effect of mass thickness of the layer was evaluated. The polycrystalline Au-NPs, with grain sizes of 14 and 19 nm tend to be elongated in one direction as the mass thickness increase. A 2 nm layer deposited at 250 C led to the formation of Au-NPs with 10-20 nm average size, obtained by SEM images, while for a 5 nm layer the wide size elongates from 25 to 150 nm with a mean at 75 nm. In the near infrared region was observed an absorption enhancement of amorphous silicon films deposited onto the Au-NPs layers with a corresponding increase in the PL peak for the same wavelength region.

Pereira, L., Barquinha Fortunato Martins P. E. R. "Influence of the oxygen/argon ratio on the properties of sputtered hafnium oxide." Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 118 (2005): 210-213. AbstractWebsite

In this work we have focused our attention on the role of the gas mixture (O2/Ar) used during HfO2 thin film processing by r.f. magnetron sputtering, to produce dielectrics with suitable characteristics to be used as gate dielectric. Increasing the O2/Ar ratio from 0 to 0.2, the films properties (optical gap, permittivity, resistivity and compactness) are improved. At these conditions, films with a band gap around 5 eV were produced, indicating a good stoichiometry. Also the flat band voltage has a reduction of almost three times indicating also a reduction of the same order on the fixed charge density at the semiconductor-insulator interface. The dielectric constant is around 16 which is very good, since the surface of the silicon where the HfO2 films were deposited contains a SiO 2 layer of about 3 nm that gives an effective dielectric constant above 20, close to the HfO2 stoichiometric value (∼25). Further increase on the O2/Ar ratio does not produce significant improvements. © 2004 Elsevier B.V. All rights reserved.

Águas, H., Martins Fortunato R. E. "Influence of the plasma regime on the structural, optical and transport properties of a-Si:H thin films." Key Engineering Materials. 230-232 (2002): 583-586. AbstractWebsite

In this work we show that it is possible to control the plasma species present near the substrate surface, from what is usually associated with an α regime (a plasma free of particles) to a γ' regime (a plasma where particles are present) and simultaneously control the energy of the ions striking the substrate during a-Si:H deposition from a silane glow discharge in a modified triode (MT) type PECVD reactor, where a DC mesh electrode biased with Vpol is located in front of the r.f electrode. The presence of large particles in the plasma leads to the deposition of the films with the poorest optoelectronic properties. When the particle size in the plasma decrease the film properties improve, but, when particles are no longer present in the plasma region close to the substrate, like in a α like regime, the properties of the films deteriorate again. The results show that the best transport properties are achieved for the films deposited in the α-γ' transition regime corresponding to 0V<Vpol<51V. Under this condition the films present a dark conductivity, σ d ≈ 10-11 (Ωcm)-1, photosensitivity, S ≈ 107, activation energy, ΔE ≈ 0.9 eV, hydrogen content, CH ≈ 10%, factor of microstructure, R ≈ 0.085 and an optical gap, Eop ≈ 1.77 eV.

Águas, H., Martins Nunes Maneira Fortunato R. Y. M. "Influence of the plasma regime on the structural, optical, electrical and morphological properties of a-Si:H thin films." Materials Science Forum. 382 (2001): 11-20. AbstractWebsite

{In this work we report how it is possible to control the plasma regime near the substrate surface, from predominantly α to predominantly γ', passing trough and intermediate α-γ' regime, and simultaneously control the energy of the ions striking the substrate during a-Si:H deposition from a silane glow discharge in a modified triode type PECVD reactor. To do so, we apply a DC voltage (Vpol to a set of grids placed in front of the r.f. electrode and by doing this, we control the energy of the ions striking the substrate during the film's growth and the plasma regime near the substrate. Under a plasma of the γ' regime, the surface roughness is high and the films are poorly compact. In the α-γ' regime, the ion bombardment is moderate and the films are highly smooth and compact. In the α regime the ion bombardment is higher and so the films can become more compact but the surface roughness increases and the electrical properties deteriorate. The results achieved show that the best transport properties are achieved for the films deposited in the α-γ' regime corresponding to a Vpol of 38 V. Under this condition the films presented a dark conductivity, σd = 6.2×10-12 (Ωcm)-1, activation energy, ΔE ≈ 0.9 eV, hydrogen content

Nunes, P., Fortunato Martins E. R. "Influence of the post-treatment on the properties of ZnO thin films." Thin Solid Films. 383 (2001): 277-280. AbstractWebsite

In this work a study of the influence of the annealing treatment (atmosphere and temperature) on the properties of zinc oxide thin films (intrinsic and doped with indium and aluminum) prepared by spray pyrolysis is presented. The result shows that the type of atmosphere (reduction or oxidant) has an important role in the changes observed in the structural, electrical and optical properties of the ZnO thin films. The ZnO thin film doped with indium, presents the lowest resistivity (ρ = 5.8×10-3 Ωcm) associated to a high transmittance (T = 86%), characteristics required for application on optoelectronic devices.

Baía, I., Fernandes Nunes Quintela Martins B. P. M. "Influence of the process parameters on structural and electrical properties of r.f. magnetron sputtering ITO films." Thin Solid Films. 383 (2001): 244-247. AbstractWebsite

This paper presents results of the role of the oxygen concentration (CO) and the deposition pressure (pd) on structural and electrical properties of indium tin oxide films produced by r.f. magnetron sputtering. The films were annealed in air, followed by a reannealed stage in hydrogen, aiming to improve the film's transparency and conductivity. The results achieved show that the films texture grain size, structure and compactness is more influenced by CO than by pd, the same does not happen with the electrical properties.

b c Nedev, N.a b, Beshkov Fortunato Georgiev Ivanov Raniero Zhang Martins G. a E. b. "Influence of the rapid thermal annealing on the properties of thin a-Si films." Materials Science Forum. 455-456 (2004): 108-111. AbstractWebsite

The variation of the structure, morphology and the electrical properties of thin amorphous silicon films caused by Rapid Thermal Annealing is studied. The films annealed at 1200°C for 2 minutes change their structure to polycrystalline and as a result their resistivity decreases by 4 orders of magnitude. Due to the small thickness of the as deposited amorphous silicon the obtained poly-Si is strongly irregular and has many discontinuities in its texture.

do Wang, J.a, Sallet Jomard Botelho Rego Elamurugu Martins Fortunato V. b F. b. "Influence of the reactive N2 gas flow on the properties of rf-sputtered ZnO thin films." Thin Solid Films. 515 (2007): 8780-8784. AbstractWebsite

Nitrogen (N)-doped ZnO thin films were RF sputtered with different N2 volume (ranging from 10% to 100%) on sapphire (001) substrates. The influence of N2 vol.% on the properties of ZnO films was analyzed by various characterization techniques. The X-ray diffraction studies showed that the films grow along the preferential (002) crystallographic plane and the crystallinity varied with varying N2 vol.%. The films sputtered with 25 vol.% N2 showed better crystallinity. The transmittance was decreased with increasing N2 volume until 25% and was almost constant above 25%. A maximum optical band gap (2.08 eV) obtained for 10 vol.% N2 decreased with increasing N2 volume to reach a minimum of 1.53 eV at 100%. The compositional analysis confirmed the incorporation of N into ZnO films, and its concentration increased with increasing N2 volume to reach a maximum of ∼ 3.7 × 1021 atom/cm3 at 75% but then decreased slightly to 3.42 × 1021 atoms/cm3. The sign of Hall coefficient confirmed that the films sputtered with ≤ 25 vol.% N2 possess p-type conductivity which changes to n-type for > 25 vol.% N2. © 2007 Elsevier B.V. All rights reserved.

Wang, J.c, Sallet Amiri Rommelluere Lusson Lewis Galtier Fortunato Martins Gorochov V. a G. a. "Influence of the self-buffer layer on ZnO film grown by atmospheric metal organic chemical vapor deposition." Thin Solid Films. 515 (2006): 1527-1531. AbstractWebsite

ZnO films with and without a self-buffer layer were grown on c-plane sapphire substrates by atmospheric metal organic chemical vapor deposition. The influence of the buffer layer thickness, annealing temperature and annealing time on ZnO films has been investigated. The full width at half maximum of the ω-rocking curve of the optimized self-buffer layer sample is only 395 arc sec. Its surface is composed of regular columnar hexagons. After the buffer layer was introduced, the A1 longitudinal mode peak at 576 cm- 1, related to the defects, disappears in Raman spectra. For the photoluminescence, besides the strong donor binding exciton peak at 3.3564 eV, an ionized donor binding exciton and a free exciton peak is respectively observed at 3.3673 and 3.3756 eV at the high-energy side in the spectrum of the sample with the buffer layer. © 2006 Elsevier B.V. All rights reserved.

Barquinha, P., Pimentel Marques Pereira Martins Fortunato A. A. L. "Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide." Journal of Non-Crystalline Solids. 352 (2006): 1749-1752. AbstractWebsite

Multicomponent amorphous oxides are starting to emerge as a class of appealing semiconductor materials for application in transparent electronics. In this work, a high performance bottom-gate n-type transparent thin-film transistors are reported, being the discussion primarily focused on the influence of the indium zinc oxide active layer thickness on the properties of the devices. For this purpose, transparent transistors with active layer thicknesses ranging from 15 nm to 60 nm were produced at room temperature using rf magnetron sputtering. Optical transmittance data in the visible range reveals average transmittance higher than 80%, including the glass substrate. The devices work in the enhancement mode and exhibit excellent saturation drain currents. On-off ratios above 107 are achieved, but this value tends to be lower for devices with thicker semiconductor films, as a result of the decrease in the resistance of the channel region with increasing thickness. Channel mobilities are also quite respectable, with some devices presenting values around 40 cm2/V s, even without any annealing or other post-deposition improvement processes. Concerning the evolution of threshold voltage with the thickness, this work shows that it increases from about 3 V in thicker films up to about 10 V in the thinnest ones. The interesting electrical properties obtained and the versatility arising from the fact that it is possible to modify them changing only the thickness of the semiconductor makes this new transparent transistors quite promising for future transparent ICs. © 2006 Elsevier B.V. All rights reserved.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Godinho Almeida Borges Martins P. a A. a. "Influence of the strain on the electrical resistance of zinc oxide doped thin film deposited on polymer substrates." Advanced Engineering Materials. 4 (2002): 610-612. AbstractWebsite

Tensile tests were performed on PET films coated with Al doped zinc oxide films by RF magnetron sputtering. During the tensile elongation, the electrical resistance of the oxide was evaluated in situ. The results indicate that the increase in the electrical resistance is related to the crack debsity and crack width, which also depends on the film thickness.

Araújo, A., Mendes Mateus Vicente Nunes Calmeiro Fortunato Águas Martins M. J. T. "Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealing." Journal of Physical Chemistry C. 120 (2016): 18235-18242. AbstractWebsite

Metal nanoparticles are of great interest for light trapping in photovoltaics. They are usually incorporated in the rear electrode of solar cells, providing strong light scattering at their surface plasmon resonances. In most cases, the nanoparticles are self-assembled by solid-state dewetting over a transparent conductive oxide (TCO) layer incorporated in the cell's rear electrode. Up to now, this process has been optimized mainly by tuning the thermal annealing parameters responsible for dewetting, or the thickness of the precursor metallic layer; but little attention has been paid to the influence of the underlying TCO layer properties on the morphology of the nanoparticles formed, which is the focus of the present article. This work investigates Ag nanoparticles structures produced on distinct surfaces by a simple, fast and highly reproducible method employing rapid thermal annealing. The results indicate that both the thermal conductivity and surface roughness of the TCO layer play a determinant role on the morphology of the nanostructures formed. This is of particular relevance, since we show in the study performed that the parasitic absorption of these Ag nanostructures is reduced, while the scattering is enhanced when the Ag nanostructures are formed on TCO layers with the highest conductivity and the lowest surface roughness (∼1 nm). These results unveil novel possibilities for the improvement of plasmonic nanostructures fabricated by thermal dewetting, via the careful adjustment of the physical properties of the underlying surface. © 2016 American Chemical Society.

Barquinha, P., Fortunato Gonçalves Pimentel Marques Pereira Martins E. A. A. "Influence of time, light and temperature on the electrical properties of zinc oxide TFTs." Superlattices and Microstructures. 39 (2006): 319-327. AbstractWebsite

In this work we present a study concerning the influence of some of the most important external factors on the electrical properties of transparent thin-film transistors (TFTs), using zinc oxide produced at room temperature as the semiconductor material. Electrical characterization performed sixteen months after the production of the devices showed a decrease in the on/off ratio from 8×105 to 1×105, mainly due to the increase of the off-current. We also observed a small increase in the saturation mobility, a decrease in the threshold voltage and an increase in the gate voltage swing (by factors of about 1.2, 0.9 and 1.6, respectively). Exposure to ambient light does not have a noticeable effect on the electrical properties, which is an important point as regards the application of these devices in active matrix displays. Some variation of the electrical properties was only detectable under intense white light radiation. In order to evaluate the temperature effect on the TFTs, they were also characterized at 90 °C. At this temperature we noticed that the off-current increased more than two times, and the other electrical properties had a small variation, returning to their initial values after cooling, meaning that the process is totally reversible. © 2005 Elsevier Ltd. All rights reserved.

Bahubalindruni, P.G.a, Tavares Borme De Oliveira Martins Fortunato Barquinha V. G. b J. "InGaZnO thin-film-transistor-based four-quadrant high-gain analog multiplier on glass." IEEE Electron Device Letters. 37 (2016): 419-421. AbstractWebsite

This letter presents a novel high-gain four-quadrant analog multiplier using only n-type enhancement indium- gallium-zinc-oxide thin-film-transistors. The proposed circuit improves the gain by using an active load with positive feedback. A Gilbert cell with a diode-connected load is also presented for comparison purposes. Both circuits were fabricated on glass at low temperature (200 °C) and were successfully characterized at room temperature under normal ambient conditions, with a power supply of 15 V and 4-pF capacitive load. The novel circuit has shown a gain improvement of 7.2 dB over the Gilbert cell with the diode-connected load. Static linearity response, total harmonic distortion, frequency response, and power consumption are reported. This circuit is an important signal processing building block in large-area sensing and readout systems, specially if data communication is involved. © 2016 IEEE.

b d Bernacka-Wojcik, I.a, Senadeera Wojcik Silva Doria Baptista Aguas Fortunato Martins R. a P. J. "Inkjet printed and "doctor blade" TiO2 photodetectors for DNA biosensors." Biosensors and Bioelectronics. 25 (2010): 1229-1234. AbstractWebsite

A dye sensitized TiO2 photodetector has been integrated with a DNA detection method based on non-cross-linking hybridization of DNA-functionalized gold nanoparticles, resulting in a disposable colorimetric biosensor. We present a new approach for the fabrication of dye sensitized TiO2 photodetectors by an inkjet printing technique-a non-contact digital, additive, no mask and no vacuum patterning method, ideal for cost efficient mass production. The developed biosensor was compared against a dye sensitized photodetector fabricated by the traditional "doctor blade" method. Detection of gold nanoparticle aggregation was possible for concentrations as low as 1.0 nM for the "doctor blade" system, and 1.5 nM for the inkjet printed photodetector. The demonstrated sensitivity limits of developed biosensors are comparable to those of spectrophotometric techniques (1.0 nM). Our results show that a difference higher than 17% by traditional photodetector and 6% by inkjet printed in the photoresponses for the complementary and non-complementary gold nanoprobe assays could be attained for a specific DNA sequence from Mycobacterium tuberculosis, the etiologic agent of human tuberculosis. The decrease of costs associated with molecular diagnostic provided by a platform such as the one presented here may prove of paramount importance in developing countries. © 2009 Elsevier B.V. All rights reserved.

b Bernacka-Wojcik, I.a b, Wojcik Aguas Fortunato Martins P. J. a H. "Inkjet printed highly porous TiO2 films for improved electrical properties of photoanode." Journal of Colloid and Interface Science. 465 (2016): 208-214. AbstractWebsite

The aim of presented work is to show the improvements obtained in the properties of TiO2 films for dye sensitized solar cells fabricated by inkjet printing using an innovative methodology. We describe the development and properties of TiO2-based inks used in a lab-scale printer, testing various commercial TiO2 pastes. The porosity of the deposited inkjet printed TiO2 films is much higher than using the conventional "doctor blade" deposition technique, as the ink solvent evaporates during the droplet fly from the nozzle to the substrate due to its picoliter volume and the applied heating of a printing stage (70°C). Thanks to higher surface area, the dye sensitized solar cells incorporating inkjet printed TiO2 film gave higher efficiencies (ηmax≈3.06%) than the more compact films obtained by the "doctor blade" method (ηmax≈2.56%). Furthermore, electrochemical analysis indicates that for whole tested thickness range, the inkjet printed layers have higher effective electron diffusion length indicating their better transport properties. © 2015 Elsevier Inc..

c Olziersky, A.a, Barquinha Vil̀ Pereira Goņalves Fortunato Martins Morante P. b A. a. "Insight on the SU-8 resist as passivation layer for transparent Ga 2 O3 - In2 O3-ZnO thin-film transistors." Journal of Applied Physics. 108 (2010). AbstractWebsite

{A nonvacuum and low temperature process for passivating transparent metal oxides based thin-film transistors is presented. This process uses the epoxy-based SU-8 resist which prevents device degradation against environmental conditions, vacuum or sputtering surface damage. The incorporation of SU-8 as a passivation layer is based on the ability of this polymer to provide features with high mechanical and chemical stability. With this approach, lithography is performed to pattern the resist over the active area of the device in order to form the passivation layer. The resulting transistors demonstrate very good electrical characteristics, such as μFE =61 cm2 /V s

b Martins, R.a, Costa Águas Soares Marques Ferreira Borges Pereira Raniero Fortunato D. a H. a. "Insights on amorphous silicon nip and MIS 3D position sensitive detectors." Materials Science Forum. 514-516 (2006): 13-17. AbstractWebsite

This work aims to report results of the spatial and frequency optical detection limits of integrated arrays of 32 one-dimensional amorphous silicon thin film position sensitive detectors with nip or MIS structure, under continuous and pulsed laser operation conditions. The arrays occupy a total active area of 45 mm2 and have a plane image resolution better than 15 μm with a cut-off frequency of about 6.8 kHz. The non-linearity of the array components varies with the frequency, being about 1.6% for 200 Hz and about 4% for the cut-off frequency (6.8 kHz).

Martins, R., Dias Guimarães A. G. L. "The interpretation of the electric and optical properties of a-Si:H films produced by rf glow discharge through dark conductivity, photoconductivity and pulse controlled capacitance-voltage measurements." Journal of Non-Crystalline Solids. 57 (1983): 9-22. AbstractWebsite

This paper deals with the interpretation of transport properties of amorphous silicon hydrogenated films (a-Si:H) through dark conductivity, photoconductivity and pulse controlled capacitance-voltage measurements. a-Si:H films were produced by rf glow discharge coupled either inductively or capacitively to a 3% SiH4/Ar mixture at different crossed electromagnetic static fields. The data concerned with the dark activation energy, photoactivation energy, variation of the density of localized states and photosensitivity, (σph/σd)25°C, of a-Si:H films can account for their optoelectronic properties which are strongly dependent on the deposition parameters. We also observed that crossed electromagnetic static fields applied during film formation influences hydrogen incorporation in a different manner than previously proposed. © 1983.

Martins, R.F.P., Fortunato E. M. C. "Interpretation of the static and dynamic characteristics of 1-D thin film position sensitive detectors based on a-Si:H p-i-n Diodes." IEEE Transactions on Electron Devices. 43 (1996): 2143-2152. AbstractWebsite

In this work, we present a model to interpret the steady-state and the dynamic detection limits of 1-D Thin Film Position Sensitive Detectors (1-D TFPSD) based on p-i-n a-Si:H devices. From this, an equivalent electric circuit is derived and the predicted values are compared with the experimental results obtained in 1-D TFPSD devices, with different sizes. The model is also able to determine the device characteristics that influence the spatial limits and the response time of the device. © 1996 IEEE.