Publications

Export 575 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
F
Fortunato, Elvira, Lavareda Guilherme Martins Rodrigo Soares Fernando Fernandes Luis. "High-detection resolution presented by large-area thin-film position-sensitive detectors." Proceedings of SPIE - The International Society for Optical Engineering. Vol. 2397. 1995. 259-270. Abstract

The aim of this work is to present the main optoelectronic characteristics of large area 1D position sensitive detectors based on amorphous silicon p-i-n diodes. From that, the device resolution, response time and detectivity are derived and discussed concerning the field of applications of the 1D thin film position sensitive detectors.

Fortunato, E.a, Assunção Gonçalves Marques Águas Pereira Ferreira Vilarinho Martins V. a A. a. "High quality conductive gallium-doped zinc oxide films deposited at room temperature." Thin Solid Films. 451-452 (2004): 443-447. AbstractWebsite

Transparent and highly conducting gallium-doped zinc oxide films were successfully deposited by rf sputtering at room temperature. The lowest resistivity achieved was 2.6×10-4 Ω cm for a thickness of 1100 nm (sheet resistance ≈1.6 Ω/sq), with a Hall mobility of 18 cm2/Vs and a carrier concentration of 1.3×1021 cm-3. The films are polycrystalline with a hexagonal structure and a strongly preferred orientation along the c-axis. A linear dependence between the mobility and the crystallite size was obtained. The films present a transmittance in the visible spectra between 80 and 90% and a refractive index of approximately 2, which is very close to the value reported for bulk material. © 2003 Elsevier B.V. All rights reserved.

Fortunato, N.a, Jang Barquinha Nathan Martins J. b P. a. "Foreword." IEEE/OSA Journal of Display Technology. 9 (2013): 687. AbstractWebsite
n/a
Fortunato, E., Malik Martins A. R. "Amorphous silicon thin films applied to photochemical sensors." Vacuum. 52 (1999): 41-44. AbstractWebsite

The present paper describes the properties of a photochemical sensor based on amorphous silicon MIS (Metal-Insulator-Semiconductor) diodes. The structure of the sensors used in this work are based on glass/Cr/a-SiH(n +)/a-Si:H(i)SiOx/Pd, where the amorphous silicon layers have been deposited by conventional plasma r.f. techniques. The proposed photochemical sensors present a 2-3 orders of magnitude change in the saturation current and a decrease of up to 40% on the open circuit voltage when in the presence of 400 ppm of hydrogen. The overall performance of these sensors, associated with the low cost fabrication technology, suggests that, in the near future, it will be possible to use them in several industrial applications. © 1998 Elsevier Science Ltd. All rights reserved.

Fortunato, E.a, Brida Pereira Águas Silva Ferreira Costa Teixeira Martins D. a L. a. "Dependence of the strains and residual mechanical stresses on the performances presented by a-Si:H thin film position sensors." Advanced Engineering Materials. 4 (2002): 612-616. AbstractWebsite

The influence of residual stresses on the performances of large area position sensitive detectors produced on flexible substrates are presented here. For evaluating the residual stresses, two main techniques were used: An active optical triangulation and angle resolved scattering and the constant photocurrent method (CPM). From the results it was possible to correlate the stresses and the density of defects present in the films.

Fortunato, E.M.C., Barquinha Pimentel Gonçalves Marques Martins Pereira P. M. C. A. "Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature." Applied Physics Letters. 85 (2004): 2541-2543. AbstractWebsite

The fabrication of high field-effect mobility ZnO thin film transistor (ZnO-TFT) at room temperature by rf magnetron sputtering was discussed. The ZnO used was deposited onto borosilicate glass substrate with a thickness of 1 mm with 100 x 100 mm surface area, coated with a 200 nm sputtered ITO film. The hall mobilities of about 2 cm2 / V s and a carrier concentration of 3 x 1016cm-3 were measured for the films with lower resistivity. It was observed that the ZnO-TFT presented an average optical transmission of 80% in the visibility part of the spectrum.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Martins P. a A. a. "Zinc oxide thin films deposited by rf magnetron sputtering on mylar substrates at room temperature." Materials Research Society Symposium Proceedings. Vol. 685. 2001. 140-145. Abstract

Aluminium doped zinc oxide thin films (ZnO:Al) have been deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by r.f. magnetron sputtering. The structural, morphological, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface. The ZnO:Al thin films with 85% transmittance in the visible and infra-red region and a resistivity as low as 3.6×102 Ωcm have been obtained, as deposited. The obtained results are comparable to those ones obtained on glass substrates, opening a new field of low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices. © 2001 Materials Research Society.

Fortunato, E., Barquinha Gonçalves Pereira Martins P. G. L. Oxide Semiconductors: From Materials to Devices. Transparent Electronics: From Synthesis to Applications., 2010. AbstractWebsite
n/a
Fortunato, E.M.C.a, Pereira Barquinha Botelho Do Rego Goņalves Vil̀ Morante Martins L. M. N. a. "High mobility indium free amorphous oxide thin film transistors." Applied Physics Letters. 92 (2008). AbstractWebsite

High mobility bottom gate thin film transistors (TFTs) with an amorphous gallium tin zinc oxide (a-GSZO) channel layer have been produced by rf magnetron cosputtering using a gallium zinc oxide (GZO) and tin (Sn) targets. The effect of postannealing temperatures (200, 250, and 300 °C) was evaluated and compared with two series of TFTs produced at room temperature (S1) and 150 °C (S2) during the channel deposition. From the results, it was observed that the effect of postannealing is crucial for both series of TFTs either for stability as well as for improving the electrical characteristics. The a-GSZO TFTs (WL=5050 μm) operate in the enhancement mode (n -type), present a high saturation mobility of 24.6 cm2 V s, a subthreshold gate swing voltage of 0.38 V /decade, a turn-on voltage of -0.5 V, a threshold voltage of 4.6 V, and an Ion Ioff ratio of 8× 107, satisfying all the requirements to be used as active-matrix backplane. © 2008 American Institute of Physics.

c d e Fortunato, E.a b, Pereira Águas Ferreira Martins L. a H. a. "Flexible a-Si: H position-sensitive detectors." Proceedings of the IEEE. 93 (2005): 1281-1286. AbstractWebsite

Flexible and large area (5 mm × 80 mm with an active length of 70 mm) position-sensitive detectors (PSDs) deposited onto polymeric substrates (polyimide - Kapton VN) have been fabricated. The optimized structure presented is based on a heterojunction of amorphous silicon (a-Si: H)/ZnO: Al. The sensors were characterized by spectral response, photocurrent dependence as a function of light intensity, and position detection measurements. The set of data obtained on one-dimensional PSDs based on the heterojunction show excellent performances with a maximum spectral response of 0.12 A/W at 500 nm and a nonlinearity of ±10% over 70-mm length. The produced sensors present a nonlinearity higher than those ones produced on glass substrates, due to the different thermal coefficients exhibited by the polymer and the a-Si: H film. In order to prove this behavior, it was measured the defect density obtained by the constant photocurrent method on a-Si: H thin films deposited on polymeric substrates and bent with different radii of curvature. © 2005 IEEE.

Fortunato, E., Pimentel Pereira Gonçalves Lavareda Águas Ferreira Carvalho Martins A. L. A. "High field-effect mobility zinc oxide thin film transistors produced at room temperature." Journal of Non-Crystalline Solids. 338-340 (2004): 806-809. AbstractWebsite

In this paper we present the first results of thin film transistors produced completely at room temperature using ZnO as the active channel and silicon oxynitride as the gate dielectric. The ZnO-based thin film transistors (ZnO-TFT) present an average optical transmission (including the glass substrate) of 84% in the visible part of the spectrum. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 1.8 V. A field effect mobility of 70 cm2/Vs, a gate voltage swing of 0.68 V/decade and an on-off ratio of 5×105 were obtained. The combination of transparency, high field-effect mobility and room temperature processing makes the ZnO-TFT very promising for the next generation of invisible and flexible electronics. © 2004 Elsevier B.V. All rights reserved.

Fortunato, E., Godinho Santos Marques Assunção Pereira Águas Ferreira Martins M. H. H. "Surface modification of a new flexible substrate based on hydroxypropylcellulose for optoelectronic applications." Thin Solid Films. 442 (2003): 127-131. AbstractWebsite

In this paper, we present the preliminary results concerning the deposition of highly transparent and conductive gallium-doped zinc oxide (GZO) deposited on transparent flexible substrate based on cellulose derivatives. Prior to the deposition of the GZO film, the surface of the polymer have been coated with a thin silicon dioxide (SiO2) layer deposited by thermal evaporation assisted by an electron gun. By doing this surface treatment, we succeeded in depositing highly conductive and transparent GZO with an electrical resistivity of 2.0 × 10-3 Ω cm and an average optical transmittance in the visible part of the spectrum (400-700 nm) of 70% by r.f. magnetron sputtering at room temperature. Besides the optoelectronic properties, the films are mechanically stable with a polycrystalline structure with a strong preferred (002) orientation, parallel to the substrate. © 2003 Elsevier B.V. All rights reserved.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Godinho Almeida Borges Martins P. a A. a. "Transparent, conductive ZnO:Al thin film deposited on polymer substrates by RF magnetron sputtering." Surface and Coatings Technology. 151-152 (2002): 247-251. AbstractWebsite

In this paper, we present the optical, electrical, structural and mechanical properties exhibited by aluminum-doped zinc oxide (ZnO:Al) thin films produced by RF magnetron sputtering on polymeric substrates (polyethylene terephthalate, PET; Mylar type D from Dupont®) with a standard thickness of 100 μm. The influence of the uniaxial tensile strain on the electrical resistance of these films was evaluated in situ for the first time during tensile elongation. In addition, the role of the thickness on the mechanical behavior of the films was also evaluated. The preliminary results reveal that the increase in electrical resistance is related to the number of cracks, as well as the crack width, which also depends on the film thickness. © 2002 Elsevier Science B.V. All rights reserved.

Fortunato, E., Malik Seco Macarico Martins A. A. A. "High sensitivity photochemical sensors based on amorphous silicon." Materials Research Society Symposium - Proceedings. Vol. 467. 1997. 949-954. Abstract

Hydrogenated amorphous silicon photochemical sensors based on Pd-MIS structures were produced by Plasma Enhanced Chemical Vapor Deposition with two different oxidized surfaces (thermal and chemical oxidation). The behaviour of dark and illuminated current-voltage characteristics in air and in the presence of a hydrogen atmosphere is explained by the changes induced by the gases in the work function of the metal, modifying the electrical properties of the interface. The photochemical sensors produced present more than 2 orders of magnitude variation on the reverse dark current when in presence of 400 ppm hydrogen to which it corresponds a decrease of 45% on the open circuit voltage.

Fortunato, E., Barquinha Pereira Gonçalves Martins P. L. G. "Multicomponent wide band gap oxide semiconductors for thin film transistors." Proceedings of International Meeting on Information Display. Vol. 2006. 2006. 605-608. Abstract

The recent application of wide band gap oxide semiconductors to transparent thin film transistors (TTFTs) is making a fast and growing (r)evolution on the contemporary solid-state electronics. In this paper we present some of the recent results we have obtained using wide band gap oxide semiconductors, like indium zinc oxide, produced by rf sputtering at room temperature. The devices work in the enhancement mode and exhibit excellent saturation drain currents. On-off ratios above 106 are achieved. The optical transmittance data in the visible range reveals average transmittance higher than 80%, including the glass substrate. Channel mobilities are also quite respectable, with some devices presenting values around 25 cm2/Vs, even without any annealing or other post deposition improvement processes. The high performances presented by these TTFTs associated to a high electron mobility, at least two orders of magnitude higher than that of conventional amorphous silicon TFTs and a low threshold voltage, opens new doors for applications in flexible, wearable, disposable portable electronics as well as battery-powered applications.

Fortunato, E., Gonçalves Marques Assunção Ferreira Águas Pereira Martins A. A. V. "Gallium zinc oxide coated polymeric substrates for optoelectronic applications." Materials Research Society Symposium - Proceedings. Vol. 769. 2003. 291-296. Abstract

Highly transparent and conductive ZnO:Ga thin films were produced by rf magnetron sputtering at room temperature on polyethylene naphthalate substrates. The films present a good electrical and optical stability, surface uniformity and a very good adhesion to the polymeric substrates. The lowest resistivity obtained was 5×10-4 Ωcm with a sheet resistance of 15 Ω/sqr and an average optical transmittance in the visible part of the spectra of 80%. It was also shown that by passivating the polymeric surface with a thin SiO2 layer, the electrical and structural properties of the films are improved nearly by a factor of 2.

Fortunato, E., Fernandes Soares Lavareda Martins M. F. G. "From intelligent materials to smart sensors: a-Si:H position sensitive detectors." Materials Research Society Symposium - Proceedings. Vol. 420. 1996. 165-170. Abstract

This work presents the main static and dynamic performances showed by one dimensional thin film position sensitive detectors (1D TFPSD), based on a-Si:H technology, with a size of 80 mm × 5 mm. The results obtained show that the TFPSD is able to respond to light powers as low as 2μ W/cm2, presenting a detection accuracy, linearity and response frequency better than 10 μm, 2% and 2 KHz, respectively. These results are quite promising regarding the application of these sensors to a wide variety of optical inspection systems where continuous quality control is required.

Fortunato, E., Soares Lavareda Martins F. G. R. "New linear array thin film position sensitive detector (LTFPSD) for 3D measurements." Materials Research Society Symposium - Proceedings. Vol. 377. 1995. 797-802. Abstract

A Linear array Thin Film Position Sensitive Detector (LTFPSD) based on hydrogenated amorphous silicon (a-Si:H) is proposed for the first time, taking advantage of the optical properties presented by a-Si:H devices we have developed a LTFPSD with 128 integrated elements able to be used in 3D inspections/measurements. Each element consists on an one-dimensional TFPSD, based on a p.i.n. diode produced in a conventional PECVD system, where the doped layers are coated with thin resistive layers to establish the required device equipotentials. By proper incorporation of the LTFPSD into an optical inspection camera it will be possible to acquire information about an object/surface, through the optical cross-section method. The main advantages of this system, when compared with the conventional CCDs, are the low complexity of hardware and software used and that the information can be continuously processed (analogue detection).

Fortunato, E., Nunes Costa Brida Ferreira Martins P. D. D. "Characterization of aluminium doped zinc oxide thin films deposited on polymeric substrates." Vacuum. 64 (2002): 233-236. AbstractWebsite

We report, for the first time, results on transparent ZnO:Al thin films deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by magnetron sputtering. The structural, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (0 0 2) perpendicular to the substrate surface. The ZnO:Al thin films with 83% transmittance in the visible region and a resistivity as low as 3.6 × 10-2 Ωcm have been obtained, as deposited. The obtained results are comparable to those obtained on glass substrates, opening a new field of low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices. © 2002 Elsevier Science Ltd. All rights reserved.

Fortunato, E.a, Lavareda Martins Soares Fernandes G. a R. a. "Large-area 1D thin-film position-sensitive detector with high detection resolution." Sensors and Actuators: A. Physical. 51 (1995): 135-142. AbstractWebsite

The aim of this work is to present the main optoelectronic characteristics of large-area one-dimensional position-sensitive detectors (1D TFPSDs) based on amorphous silicon (a-Si) p-i-n diodes. From that, the device resolution, response time and detectivity (defined as being the reciprocal of the noise equivalent power pattern) are derived and discussed concerning the field of applications of the 1D TFPSDs. © 1996.

Fortunato, E.a, Gonçalves Marques Viana Águas Pereira Ferreira Vilarinho Martins A. a A. a. "New developments in gallium doped zinc oxide deposited on polymeric substrates by RF magnetron sputtering." Surface and Coatings Technology. 180-181 (2004): 20-25. AbstractWebsite

Gallium-doped zinc oxide (GZO) thin films have been deposited onto polyethylene naphthalate (PEN) substrates by r.f. magnetron sputtering at room temperature. The influence of the film thickness (from 70 to 890 nm) on the electrical, structural and morphological properties are presented. The lowest resistivity obtained was 5 × 10-4 Ω cm with a Hall mobility of 13.7 cm2/Vs and a carrier concentration of 8.6 × 1020 cm-3. These values were obtained by passivating the surface of the polymer with a thin silicon dioxide, so preventing the moisture and oxygen permeation inside the film. © 2003 Elsevier B.V. All rights reserved.

Fortunato, E.a, Vieira Lavareda Ferreira Martins M. a G. a. "Material properties, project design rules and performances of single and dual-axis a-Si:H large area position sensitive detectors." Journal of Non-Crystalline Solids. 164-166 (1993): 797-800. AbstractWebsite

We have developed large area (up to 80mm×80mm) Thin Film Position Sensitive Detectors (TFPSD) based on hydrogenated amorphous silicon (a-Si:H). Although crystalline silicon PSDs have been realized and applied to optical systems, their detection area is small (less than 10mm×10mm), which implies the need of optical magnification systems for supporting their field of applications towards large area inspection systems, which does not happen by using a-Si:H devices. The key factors for the TFPSDs resolution are the thickness uniformity of the constituting layers, the geometry and the position of the contacts. In this paper we present data on single and dual-axis rectangular TFPSDs correlating, their performances with the different underlying lateral effects. For the single axis-detector, with two opposite extended contacts, the output photocurrent difference to sum ratio is a linear function of the position of a narrow incident light beam, even for low illumination levels (below 20 lux). For the dual-axis detector with extended contacts, at all four sides (except for small gaps at the vertices due to edge effects) an almost linear relation has been found between the incident light spot position along both axis and the corresponding output photocurrents. © 1993.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Godinho Almeida Borges Martins P. a A. a. "Influence of the strain on the electrical resistance of zinc oxide doped thin film deposited on polymer substrates." Advanced Engineering Materials. 4 (2002): 610-612. AbstractWebsite

Tensile tests were performed on PET films coated with Al doped zinc oxide films by RF magnetron sputtering. During the tensile elongation, the electrical resistance of the oxide was evaluated in situ. The results indicate that the increase in the electrical resistance is related to the crack debsity and crack width, which also depends on the film thickness.

Fortunato, E., Martins R. "New materials for large-area position-sensitive detectors." Sensors and Actuators, A: Physical. 68 (1998): 244-248. AbstractWebsite

Large-area thin-film position-sensitive detectors (TFPSDs) using the hydrogenated amorphous silicon (a-Si:H) technology are presented. The detection accuracy of these devices (lengths of about 80 mm) is better than ±0.5% of the value of the full scale of the sensor, the spatial resolution is better than ±20 μm, the non-linearities measured are below ±2% and the frequency response is in the range of a few kilohertz, compatible with the sampling frequency of most electromechanical assembling/control systems. The obtained results are quite promising regarding the application of these sensors to a wide variety of optical inspection systems. © 1998 Elsevier Science S.A. All rights reserved.

Fortunato, E., Barquinha Pereira Gonçalves Martins P. L. G. "Advanced materials for the next generation of thin film transistors." IDMC 2007 - International Display Manufacturing Conference and FPD Expo - Proceedings. 2007. 371-373. Abstract

Staggered bottom gate transparent thin film transistors (TTFTs) have been produced by rf magnetron sputtering at room temperature, using amorphous indium-zinc-oxide (IZO) semiconductor, for the channel as well as for the drain and source regions. The obtained TTFTs operate in the enhancement mode with threshold voltages of 2.4 V, saturation mobility of 22.7 cm2/Vs, gate voltage swing of 0.44 V/dec and an ON/OFF current ratio of 7×10 7. The high performances presented by these TTFTs produced at room temperature, make these TFTs a promising candidate for flexible, wearable, disposable portable electronics as well as battery-powered applications.