Publications

Export 575 results:
Sort by: Author Title Type [ Year  (Desc)]
2006
Águas, H., Pereira Raniero Costa Fortunato Martins L. L. D. "Investigation of a-Si:H 1D MIS position sensitive detectors for application in 3D sensors." Journal of Non-Crystalline Solids. 352 (2006): 1787-1791. AbstractWebsite

This paper presents the results achieved in optimized 1D position sensitive detectors (PSD) using a metal-insulator-semiconductor (MIS) structure and different length to width ratios, in order to determine the optimal geometrical factor for the desired 3D integration. The results show that the optimized MIS PSD produced, exhibited linearity errors as low as 0.8% and sensitivities of 32 mV/cm, for a 5 mW spot beam intensity at a wavelength of 532 nm. The sensors can achieve a longitudinal spatial resolution of 1.25 μm (estimated by modulation transfer function calculation), while the transverse resolution depends on the minimum width used for each sensor. The calculated Jones parameter of the sensors is higher than 1011 J, with a fall-off parameter of 0.012 cm-1, indicating a high signal to noise detection ratio. © 2006 Elsevier B.V. All rights reserved.

Fernandes, M.a, Vieira Martins M. a R. b. "The laser scanned photodiode: Theoretical and electrical models of the image sensor." Journal of Non-Crystalline Solids. 352 (2006): 1801-1804. AbstractWebsite

The laser scanned photodiode (LSP) presents a new concept of image sensor with application in fields where low cost, large area and design simplicity are of major importance. Over the past few years this type of sensor has been under investigation and development, where several structures have been tested and characterized. In this work we present the physical explanation of device operating principle, with recourse to numerical simulation applied to structures with different compositions of the doped layers. An electrical model for this type of device is presented, enabling a fast evaluation of the device characteristics by means of an electrical simulation program. © 2006 Elsevier B.V. All rights reserved.

Pereira, L., Barquinha Fortunato Martins P. E. R. "Low temperature processed hafnium oxide: Structural and electrical properties." Materials Science in Semiconductor Processing. 9 (2006): 1125-1132. AbstractWebsite

In this work hafnium oxide (HfO2) was deposited by r.f. magnetron sputtering at room temperature and then annealed at 200 °C in forming gas (N2+H2) and oxygen atmospheres, respectively for 2, 5 and 10 h. After 2 h annealing in forming gas an improvement in the interface properties occurs with the associated flat band voltage changing from -2.23 to -1.28 V. This means a reduction in the oxide charge density from 1.33×1012 to 7.62×1011 cm-2. After 5 h annealing only the dielectric constant improves due to densification of the film. Finally, after 10 h annealing we notice a degradation of the electrical film's properties, with the flat band voltage and fixed charge density being -2.96 V and 1.64×1012 cm-2, respectively. Besides that, the leakage current also increases due to crystallization. On the other hand, by depositing the films at 200 °C or annealing it in an oxidizing atmosphere no improvements are observed when comparing these data to the ones obtained by annealing the films in forming gas. Here the flat band voltage is more negative and the hysteresis on the C-V plot is larger than the one recorded on films annealed in forming gas, meaning a degradation of the interfacial properties. © 2006 Elsevier Ltd. All rights reserved.

Fortunato, E., Barquinha Pereira Gonçalves Martins P. L. G. "Multicomponent wide band gap oxide semiconductors for thin film transistors." Proceedings of International Meeting on Information Display. Vol. 2006. 2006. 605-608. Abstract

The recent application of wide band gap oxide semiconductors to transparent thin film transistors (TTFTs) is making a fast and growing (r)evolution on the contemporary solid-state electronics. In this paper we present some of the recent results we have obtained using wide band gap oxide semiconductors, like indium zinc oxide, produced by rf sputtering at room temperature. The devices work in the enhancement mode and exhibit excellent saturation drain currents. On-off ratios above 106 are achieved. The optical transmittance data in the visible range reveals average transmittance higher than 80%, including the glass substrate. Channel mobilities are also quite respectable, with some devices presenting values around 25 cm2/Vs, even without any annealing or other post deposition improvement processes. The high performances presented by these TTFTs associated to a high electron mobility, at least two orders of magnitude higher than that of conventional amorphous silicon TFTs and a low threshold voltage, opens new doors for applications in flexible, wearable, disposable portable electronics as well as battery-powered applications.

Fortunato, E., Gonçalves Marques Pimentel Barquinha Águas Pereira Raniero Gonçalves Ferreira Martins A. A. A. "Multifunctional thin film zinc oxide semiconductors: Application to electronic devices." Materials Science Forum. 514-516 (2006): 3-7. AbstractWebsite

In this paper we report some of the recent advances in transparent thin film oxide semiconductors, specifically zinc oxide (ZnO), produced by rf magnetron sputtering at room temperature with multifunctional properties. By controlling the deposition parameters it is possible to produce undoped material with electronic semiconductor properties or by doping it to get either n-type or p-type semiconductor behavior. In this work we refer our experience in producing n-type doping ZnO as transparent electrode to be used in optoelectronic applications such as solar cells and position sensitive detectors while the undoped ZnO can be used as UV photodetector or ozone gas sensor or even as active layer of fully transparent thin film transistors.

Pereira, L., Águas Fortunato Martins H. E. R. "Nanostructure characterization of high k materials by spectroscopic ellipsometry." Applied Surface Science. 253 (2006): 339-343. AbstractWebsite

In this work, the optical and structural properties of high k materials such as tantalum oxide and titanium oxide were studied by spectroscopic ellipsometry, where a Tauc-Lorentz dispersion model based in one (amorphous films) or two oscillators (microcrystalline films) was used. The samples were deposited at room temperature by radio frequency magnetron sputtering and then annealed at temperatures from 100 to 500 °C. Concerning the tantalum oxide films, the increase of the annealing temperature, up to 500 °C does not change the amorphous nature of the films, increasing, however, their density. The same does not happen with the titanium oxide films that are microcrystalline, even when deposited at room temperature. Data concerning the use of a four-layer model based on one and two Tauc-Lorentz dispersions is also discussed, emphasizing its use for the detection of an amorphous incubation layer, normally present on microcrystalline films grown by sputtering. © 2006 Elsevier B.V. All rights reserved.

Elangovan, E., Marques Martins Fortunato A. R. E. "A next generation TCO material for display systems: Molybdenum doped indium oxide thin films." Materials Research Society Symposium Proceedings. Vol. 936. 2006. 1-6. Abstract

Thin films of indium molybdenum oxide (IMO) were rf sputtered onto glass substrates at room temperature. The films were studied as a function of sputtering power (ranging 40-180 W) and sputtering time (ranging 2.5-20 min). Thickness of the films found varied between 50-400 nm. The films were characterized for their structural (XRD), electrical (Hall measurements) and optical (Transmittance spectra) properties. XRD studies revealed that the films are amorphous for the sputtering power ≤ 100 W and deposition time ≤ 5 min. All the other films are polycrystalline and the strongest refection along (222) plane showing a preferential orientation. A minimum bulk resistivity of 2.65 × 10-3 Ω-cm and a maximum carrier concentration of 4.16 × 1020 cm-3 have been obtained for the films sputtered at 180 W (10 min). Whereas maximum mobility (19.5 cm2 V-1 s-1) has been obtained for the films sputtered at 80 W (10 min). A maximum visible transmittance of 90% (500 nm) has been obtained for the films sputtered at 80 W (10 min) with a minimum of 27% for those sputtered at 180 W. The optical band gap of the films found varying between 3.75 and 3.90 eV for various sputtering parameters. © 2006 Materials Research Society.

Pereira, L.a, Martins Schell Fortunato Martins R. M. S. b. "Nickel-assisted metal-induced crystallization of silicon: Effect of native silicon oxide layer." Thin Solid Films. 511-512 (2006): 275-279. AbstractWebsite

This work focuses on the role of the native oxide layer (SiO2) on the nickel (Ni)-assisted crystallization of amorphous silicon (a-Si). In some samples, the native oxide was removed using a HF-diluted solution before Ni layers with 0.5 nm be deposited on a-Si. The results show that the presence of a thin SiO2 layer of about 3 nm between the a-Si and the Ni delays the crystallization process. Ellipsometry data show that, after annealing for 5 h at 500 °C, the HF-cleaned sample presents a crystalline fraction of 88%, while the one with the native oxide has only 35%. This difference disappears after 20 h where both samples present similar crystalline fraction. These facts are also reflected on the film's electrical properties, where the activation energy for samples annealed for 5 h rises from 0.42 eV to 0.55 eV, when the oxide layer is removed. After 20 h and 30 h, the activation energy is around 0.55 eV for both kinds of samples, meaning that films with similar electrical properties are now obtained. However, the XRD data suggest the presence of some structural differences attributed to slight differences on the crystallization process. © 2005 Elsevier B.V. All rights reserved.

Santos, V.a, Borges Ranito Pires Araújo Marques Tomás Fortunato Martins Nunes J. P. a C. "Novel multilayer coatings on polyethylene for acetabular devices." Materials Science Forum. 514-516 (2006): 868-871. AbstractWebsite

Total hip replacement is a common practice in every day clinical work. Artificial hip implants consist of a femoral component and an acetabular component. Nowadays the acetabular component is composed of a polymeric cup and a metallic shell. This study focuses the development of an innovative acetabular component substituting the metallic shell by a multilayer coating on the acetabular cup. A titanium coating was deposited onto ultra-high molecular weight polyethylene (UHMWPE) samples by physical vapour deposition (PVD), having an in situ pre-treatment with argon ion bombardment in order to optimize the adhesive strength by surface modification, followed by the deposition of a thin film of hydroxyapatite (HA) using rf magnetron sputtering technique, at room temperature. Results obtained seem to indicate that these multilayer coatings can be a viable alternative to the metallic shell, leading to the substitution of a two part for a one part acetabular component.

c c Martins, N.a, Canhola Quintela Ferreira Raniero Fortunato Martins P. a M. b. "Performances of an in-line PECVD system used to produce amorphous and nanocrystalline silicon solar cells." Thin Solid Films. 511-512 (2006): 238-242. AbstractWebsite

This paper presents the performances of an in-line plasma enhanced chemical vapor deposition system constituted by 5 chambers and one external unloaded chamber used in the simultaneous manufacturing of 4 large (30 cm × 40 cm) solar cells deposited on glass substrates. The system is fully automatically controlled by a Programmable Logic Controller using a specific developed software that allows devices mass production without losing the flexibility to perform process innovations according to the industrial requests, i.e. fast and secure changes and optimizations. Overall, the process shift is of about 15 min per each set of 4 solar cells. Without a buffer layer, solar cells with efficiencies of about 9% were produced by the proper tuning of the i-layer production conditions. © 2005 Elsevier B.V. All rights reserved.

Pereira, L., Barquinha Fortunato Martins P. E. R. "Poly-Si thin film transistors: Effect of metal thickness on silicon crystallization." Materials Science Forum. 514-516 (2006): 28-32. AbstractWebsite

In this work metal induced crystallization (MIC) using nickel (Ni) was employed to obtain poly-Si by crystallization of amorphous films for application as active layer in TFTs. Ni layers with thicknesses of 0.5 nm, 1 nm and 2 nm were used to crystallize the silicon. The TFTs were produced with a bottom gate configuration using a multi-layer Al2O3/TiO2 insulator produced by atomic layer deposition (ALD) as gate dielectric. The best performances of the TFT produced were obtained when using very thin Ni layers for the crystallization. This is attributed to a lower metal contamination and to the enhancement of grain size, as a result of the lower nucleation density achieved, when using the thinnest Ni layer. Devices that exhibit effective mobility of 45.5 cm2V-1s-1 and an on/off ratio of 5.55×104 were produced using a 0.5 nm Ni layer to crystallize the active channel area.

Martins, R., Chu Fortunato Conde Ferreira V. E. J. "Preface." Journal of Non-Crystalline Solids. 352 (2006): vii. AbstractWebsite
n/a
Raniero, L., Ferreira Pimentel Gonçalves Canhola Fortunato Martins I. A. A. "Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings." Thin Solid Films. 511-512 (2006): 295-298. AbstractWebsite

In this paper we study the electro-optical behaviour and the structure of different TCOs, namely the ZGO, ITO and IZO films before and after being submitted to different hydrogen plasma power densities, for times up to 60 s, aiming their use in a/nc-Si:H solar cells. The results achieved show that ZGO films do not reduce for all plasma conditions used and so, the solar cells produced evidence high current density, about 17% larger that the one recorded in the other TCOs. Besides that, by combining the electrical and optical characteristics of the films through a figure of merit, the data reveal that for the ITO and IZO films even when exposed to very low hydrogen power plasma, the figure of merit is reduced up to 50%. © 2005 Elsevier B.V. All rights reserved.

Raniero, L.a, Gonçalves Pimentel Zhang Ferreira Vilarinho Fortunato Martins A. a A. a. "Role of hydrogen plasma on the electrical and optical properties of indium zinc transparent conductive oxide." Materials Science Forum. 514-516 (2006): 63-67. AbstractWebsite

In this work we studied the influence of the power density of hydrogen plasma on electrical and optical properties (Hall mobility, free carrier concentration, sheet resistance, optical transmittance and a.c. impedance) of indium zinc oxide films, aiming to determine their chemical stability. This is an important factor for the optimization of amorphous/nanocrystalline p-i-n hydrogenated silicon (a/nc-Si:H) solar cells, since they should remain chemically highly stable during the p layer deposition. To perform this work the transparent conductive oxide was exposed to hydrogen plasma at substrate temperature of 473 K, 87 Pa of pressure and 20 seem of hydrogen flow. The results achieved show that IZO films were reduced for all plasma conditions used, which leads mainly to a decrease on films transmittance. For the lowest power density used in the first minute of plasma exposition the transmittance of the IZO films decreases about 29%.

Pimentel, A.C., Gonçalves Marques Martins Fortunato A. A. R. "Role of the thickness on the electrical and optical performances of undoped polycrystalline zinc oxide films used as UV detectors." Journal of Non-Crystalline Solids. 352 (2006): 1448-1452. AbstractWebsite

In this paper we present the effect of thickness on the electrical and optical properties of intrinsic/nondoped zinc oxide thin films deposited at room temperature by radio frequency magnetron sputtering, able to be used as a semiconductor material on electronic devices, like for example ozone gas sensors and ultraviolet detectors. These films are polycrystalline with a c-axis preferential orientation parallel to the substrate. The films present a resistivity that varies from 5.0 × 104 Ω cm to 1.0 × 109 Ω cm with an optical visible transmittance of 85%. The sensor response exceeds more than five orders of magnitude when exposed to UV light recovering to the initial state in the presence of ozone. © 2006 Elsevier B.V. All rights reserved.

Zhang, S.a b, Liao Raniero Fortunato Xu Kong Águas Ferreira Martins X. b L. a. "Silicon thin films prepared in the transition region and their use in solar cells." Solar Energy Materials and Solar Cells. 90 (2006): 3001-3008. AbstractWebsite

Diphasic silicon films (nc-Si/a-Si:H) have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the nc-Si/a-Si:H has higher photoconductivity (σph), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. The blue shift for the stretching mode and red shift for the wagging mode in the IR spectra also show the variation of the microstructure. By using this kind of film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100 mw/cm2) at room temperature. © 2006.

Elangovan, E.a, Barquinha Pimental Viana Martins Fortunato P. a A. a. "Some studies on molybdenum doped indium oxide thin films rf sputtered at room temperature." Materials Research Society Symposium Proceedings. Vol. 928. 2006. 92-97. Abstract

Thin films of molybdenum doped indium oxide (IMO) were rf sputtered onto glass substrates at room temperature. The films were studied as a function of oxygen volume percentage (OVP) ranging 1.4 - 10.0% in the sputtering chamber. The thickness of the films found varying between 180 and 260 nm. The X-ray diffraction pattern showed the films are polycrystalline with the peaks corresponding to (222) and (400) planes and one among them showing as a preferential orientation. It is observed that the preferred orientation changes from (222) plane to (400) as the OVP increases from 1.4 to 10.0%. The transmittance spectra were found to be in the range of 77 to 89%. The optical band gap calculated from the absorption coefficient of transmittance spectra was around 3.9 eV. The negative sign of Hall coefficient confirmed the films were n-type conducting. The bulk resistivity increased from 2.26×10 -3 to 4.08×-1 Ωcm for the increase in OVP from 1.4 to 4.1%, and thereafter increased dramatically so as the Hall coefficients were not detectable. From the AFM morphologies it is evaluated that the RMS roughness of the films ranges from 0.9 to 3.2 nm. © 2006 Materials Research Society.

Pereira, L.a, Águas Beckers Martins Fortunato Martins H. a M. b. "Spectroscopic ellipsometry study of nickel induced crystallization of a-Si." Journal of Non-Crystalline Solids. 352 (2006): 1204-1208. AbstractWebsite

The aim of this work is to present a spectroscopic ellipsometry study focused on the annealing time effect on nickel metal induced crystallization of amorphous silicon thin films. For this purpose silicon layers with 80 and 125 nm were used on the top of which a 0.5 nm Ni thick layer was deposited. The ellipsometry simulation using a Bruggemann Effective Medium Approximation shows that films with 80 nm reach a crystalline fraction of 72% after 1 h annealing, appearing to be full crystallized after 2 h. No significant structural improvement is detected for longer annealing times. On the 125 nm samples the crystalline volume fraction after 1 h is only around 7%, requiring 5 h to get a similar crystalline fraction than the one achieved with the thinner film. This means that the time required for full crystallization will be strongly determined by the Si layer thickness. Using a new fitting approach the Ni content within the films was also determined by SE and related to the silicon film thickness. © 2006 Elsevier B.V. All rights reserved.

c Gonçalves, A.a c, Gonçalves Fortunato Marques Pimentel Martins Silva Smith Bela Borges G. a E. a. "Study of electrochromic devices incorporating a polymer gel electrolyte component." Materials Science Forum. 514-516 (2006): 83-87. AbstractWebsite

Electrochromic materials have attracted considerable attention during the last two decades as a consequence of their potential application in several different types of optical devices. Examples of these devices include intelligent windows and time labels. In this paper the authors describe results obtained with thin tungsten oxide films produced at room temperature by rf magnetron sputtering under an argon and oxygen atmosphere on transparent conductive oxide coated glass substrates. To protect the surface of the electrochromic film, prevent water absorption and obtain a good memory effect under open circuit voltages, a layer of Ta2O5 was deposited over the WO3 films. In this study, the effect of different electrolyte compositions on the open circuit memory of optical devices has been characterized. The best results were obtained for electrochromic devices with polymer gel p(TMC)3LiC1O4 and p(TMC)8LiClO 4 electrolytes. These prototype devices present an overall transmittance of ∼75% in their bleached state and after coloration 40.5 and 52.5% respectively. These devices also show memory effect and an optical density considered satisfactory for some electrochromic applications.

Zhang, S.a, Hu Raniero Liao Ferreira Fortunato Vilarinho Perreira Martins Z. a L. a. "The study of high temperature annealing of a-SiC:H films." Materials Science Forum. 514-516 (2006): 18-22. AbstractWebsite

A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 Å) gold film was evaporated on the half area of the a-SiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100°C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.

Raniero, L., Ferreira Pereira Águas Fortunato Martins I. L. H. "Study of nanostructured silicon by hydrogen evolution and its application in p-i-n solar cells." Journal of Non-Crystalline Solids. 352 (2006): 1945-1948. AbstractWebsite

Nanostructured silicon films were deposited on the amorphous to microcrystalline transition region by plasma enhanced chemical vapor deposition, using an rf frequency of 27.12 MHz. Micro-Raman spectroscopy data show that in the transition region the peaks typically associated with amorphous silicon are slightly shifted towards higher wavenumber and become narrow, which could be explained by the short range order improvement or by the incorporation of very small Si nanocrystallites. The hydrogen evolution spectra from samples deposited in this region show two peaks, one at low temperature (LT) and the other at high temperature (HT), around 698 K and 840 K, respectively. These peaks represent activation energies of 87 (LT) and 135 (HT) kJ/mol, respectively, as deduced from the so-called Kissinger's method. The solar cells fabricated using i-layers produced in this transition region show good performances, with current density = 14.96 mA/cm2, short circuit voltage = 0.95 V, and fill factor = 0.67, which leads to efficiencies of 9.52%. © 2006 Elsevier B.V. All rights reserved.

Raniero, L., Fortunato Ferreira Martins E. I. R. "Study of nanostructured/amorphous silicon solar cell by impedance spectroscopy technique." Journal of Non-Crystalline Solids. 352 (2006): 1880-1883. AbstractWebsite

This work deals with the study of nanostructured/amorphous silicon solar cell deposited by plasma enhanced chemical vapor deposition at 27.12 MHz by impedance spectroscopy. The solar cell studied present fill factor of 0.67, open circuit voltage of 0.94 V and short-circuit current density of 14.48 mA/cm2, which leads to the efficiency of 9.12%. The impedance spectroscopy analysis was performed under dark and illumination conditions. The data obtained were used to define an electrical equivalent circuit model able to explain the role of the different solar cell components, including the interfaces, on the solar cell performance. © 2006 Elsevier B.V. All rights reserved.

Barquinha, P., Fortunato Gonçalves Pimentel Marques Pereira Martins E. A. A. "A study on the electrical properties of ZnO based transparent TFTs." Materials Science Forum. 514-516 (2006): 68-72. AbstractWebsite

The purpose of this work is to present in-depth electrical characterization on transparent TFTs, using zinc oxide produced at room temperature as the semiconductor material. Some of the studied aspects were the relation between the output conductance in the post-pinch-off regime and width-to-length ratios, the gate leakage current, the semiconductor/insulator interface traps density and its relation with threshold voltage. The main point of the analysis was focused on channel mobility. Values extracted using different methodologies, like effective, saturation and average mobility, are presented and discussed regarding their significance and validity. The evolution of the different types of mobility with the applied gate voltage was investigated and the obtained results are somehow in disagreement with the typical behavior found on classical silicon based MOSFETs, which is mainly attributed to the completely different structures of the semiconductor materials used in the two situations: while in MOSFETS we have monocrystalline silicon, our transparent TFTs use poly/nanocrystalline zinc oxide with grain sizes of about 10 nm.

c Gonçalves, G.a, Pimentel Fortunato Martins Queiroz Bianchi Faria A. a E. a. "UV and ozone influence on the conductivity of ZnO thin films." Journal of Non-Crystalline Solids. 352 (2006): 1444-1447. AbstractWebsite

Complex impedance measurements were used to analyze the influence of ultraviolet and ozone gas on the electronic behaviour of ZnO films grown by rf magnetron sputtering. The data show that UV exposure strongly increases the ac conductivity of the film at very low frequencies, and that after ozone exposure it recovers the original value. At high frequencies, however, UV-light exposure it does not change the conductivity but the ozone acts in the sense to decrease it. Two distinct mechanisms, related to two relaxation time distributions are clearly observed: they are superimposed in the virgin sample, but they split forming two semicircles in the z″(f) - z′(f) diagrams when the samples are treated with UV and/or ozone gas. A combination of the bruggeman effective medium approximation (BEMA) with the random free energy barrier model is used to fit the data and to explain the ac conductivity variation phenomena observed. © 2006 Elsevier B.V. All rights reserved.

Pimentel, A.C., Gonçalves Marques Martins Fortunato A. A. R. "Zinc oxide thin films used as an ozone sensor at room temperature." Materials Research Society Symposium Proceedings. Vol. 915. 2006. 243-248. Abstract

In this paper we present results of intrinsic/non doped zinc oxide films deposited at room temperature by rf magnetron sputtering able to be used as a truly semiconductor on electronic devices like ozone gas sensors and ultra-violet detectors. The produced films are polycrystalline with a c-axis preferential orientation parallel to the substrate. The films' resistivity varies from 4.0×10-2 Ωcm to 1.0×10-9 Ωcm, depending on the deposition conditions used (rf power density and oxygen partial pressure), which turns not affecting the optical properties (in average a transmittance of around 85 % and an optical band gap of about 3.44 eV, independent of the deposition conditions used). When exposed to UV light the sensor response based on these films may exceed more than 5 orders of magnitude, recovering to the initial state in the presence of ozone. The sensitivity of the films is improved when the oxygen partial pressure increases and the rf power density used decreases, due to changes on the structural properties of the films. © 2006 Materials Research Society.