Publications

Export 631 results:
Sort by: Author Title Type [ Year  (Desc)]
2010
Mateus, O. (2010).  Paleontological collections of the Museum of Lourinhã (Portugal). (JM Brandão, Callapez, PM, O. Mateus, Castro, P, Ed.).Colecções e museus de Geologia: missão e gestão. 121–126., 1: Ed. Universidade de Coimbra e Centro de Estudos de História e Filosofia da Ciência Abstract
n/a
Mateus, O. (2010).  Physical drivers of evolution and the history of the marine tetrapod fauna of Angola. –, , 1 Abstract

Modern marine species populations are often evaluated in terms of bottom-up, resource limited structure, or top-down, predator controlled structure. In a larger timeframe, investiga- tion of physical drivers in marine tetrapod evolution relies on the recognition of patterns and the correlation in timing of physical events with biotic change. However, it has been dem- onstrated through the study of fossil cetaceans that a broader deep-time perspective within a top-down or bottom-up framework is informative. Here we examine the fossil record of &UHWDFHRXV PDULQH WHWUDSRGV LQ $QJROD WR GLVFHUQ SDWWHUQV WKDW PD\ UHÀHFW SK\VLFDO GULYHUV RI evolution, and that are also relevant to population structure. In modern marine ecosystems, GLVWULEXWLRQ SDWWHUQV UHÀHFWLQJ SULPDU\ SURGXFWLYLW\ DUH LQGLFDWLYH RI ERWWRP?XS FRQWURO? ,Q the fossil record, productivity-controlled distribution patterns can also be perceived. Physi- cal parameters resulting in environmental stability, sea-level change, oceanic anoxic events, paleoclimate, and paleogeography are examined in comparison with taxonomic diversity and life history patterns. Mosasaurs originated during a time of high global temperatures and shallow temperature gradients. As upper-trophic-level species of modest size and plesiopedal limb structure (capable of terrestrial locomotion), early mosasaurs were subject to both top- down and bottom up pressures. The attainment of larger size coupled with emigration and biogeographic distribution in areas of high primary productivity, and niche differentiation VKRZQ E\ 13C values, indicate bottom-up pressures. Productivity along the African coast since the formation of the Atlantic Ocean facilitated the co-occurrence of diverse marine tetrapods through time, and has culminated today in the Benguela large marine ecosystem. Just as the current Benguela ecosystem has tetrapod species populations dominated by both bottom-up (cetaceans) and top-down strategies (sea birds and pinnipeds), so too did the Cre- taceous community, with mosasaurs and plesiosaurs having predominantly bottom-up popu- lation structure, while sea turtles and pterosaurs were more subject to top-down pressures.

Mateus, O. (2010).  Tectonic Drift, Climate, and Paleoenvironment of Angola Since the Cretaceous. Journal of Vertebrate Paleontology. 02., 1 Abstract

Africa is the only continent that now straddles arid zones located beneath the descending limbs of both the northern and southern Hadley cells, and it has done so since it became a distinct continent in the Early Cretaceous. Since that time, Africa has drifted tectonically some 12 degrees north and rotated approximately 45 degrees counterclockwise. This changing latitudinal setting and position of the landmass under the relatively stable Hadley Cells is manifested as southward migration of climatic zones over the past 132 million years. Data from kerogen, X-ray diffraction analysis of sedimentary matrix, carbon isotopes from shell samples and tooth enamel,new 40Ar/39Ar radiometric dates, pollen and plant macrofossils, and fossil vertebrates indicate a productive upwelling system adjacent to a coastal desert since the opening of the South Atlantic Ocean; however, the position of the coastal desert has migrated southward as Africa drifted north, resulting in today's Skeleton Coast and Benguela Current. This migration has had a profound effect on the placement of the West African coast relative to areas of high marine productivity and resulting extensive hydrocarbon deposits, on the placement of arid zones relative to the continent especially the Skeleton Coast desert, on the climatic history of the Congo Basin (which shows a Late Cretaceous decrease in aridity based on the relative abundance of analcime in the Samba core), and in reducing the southern temperate region of Africa from 17{%} of continental area during the Cretaceous to 2{%} today. We show here that these related geographic and environmental changes drove ecological and evolutionary adjustments in southern African floras and faunas, specifically with respect to the distribution of anthropoid primates, the occurrence of modern relicts such as the gnetalean Welwitschia mirabilis, endemism as in the case of ice plants, and mammalian adaption to an open environment as in springhares. Africa's tectonic drift through climate zones has been a first-order environmental determinant since the Early Cretaceous.

Araújo, R., Jacobs L., Polcyn M., Mateus O., & Schulp A. (2010).  Plesiosaurs from the Maastrichtian of Bentiaba, Namibe Province, Angola. Society of Vertebrate Paleontology 70th Annual Meeting.. Abstractaraujo_polcyn_mateus__schulp_2010_plesiosaurs_from_maastrichtian_of_angola_svp10abstracts.pdf

Recent excavations at the Maastrichtian locality of Bentiaba, Namibe Province, in the southern part of Angola, have yielded high quality and partially articulated plesiosaur specimens that indicate at least three taxa were present. A new elasmosaurid is the most abundant and well-preserved plesiosaur taxon at Bentiaba. It is known from a complete articulated paddle and other elements of the skeleton, many of which remain to be collected. The most diagnostic elements so far recovered are the complete pelvic and pectoral girdles, which indicate that the Bentiaba elasmosaurid is probably a new genus because it bears an asymmetrical ventral process of the coracoids, a complete cordiform posterior coracoid vacuity, and pronounced excavation of the anterior border of the coracoids, among other characters. A polycotylid is [...]

Mateus, O., & Milàn J. (2010).  A diverse Upper Jurassic dinosaur ichnofauna from central-west Portugal. Lethaia. 43, 245-257., Number 2 Abstract
n/a
Mateus, O., Dyke G. A. J., Motchurova-Dekova N., Kamenov G. D., & Ivanov P. (2010).  The first record of a dinosaur from Bulgaria. Lethaia. 43, 88-94., Number 1 Abstract
n/a
Polcyn, M. J., Jacobs L. L., Schulp A. S., & Mateus O. (2010).  The North African Mosasaur Globidens phosphaticus from the Maastrichtian of Angola. Historical Biology. 22, 175-185., Number 1 Abstract
n/a
2009
Eberth, D. A., Kobayashi Y., Lee Y. - N., Mateus O., Therrien F., Zelenitsky D. K., & Norell M. A. (2009).  Assignment of Yamaceratops dorngobiensis and associated redbeds at Shine Us Khudag (eastern Gobi, Dorngobi Province, Mongolia) to the redescribed Javkhlant Formation (Upper Cretaceous). Journal of Vertebrate Paleontology. 29, 295–302., mar, Number 1: Informa {UK} Limited AbstractWebsite
n/a
Eberth, D. A., Kobayashi Y., Lee Y. N., Mateus O., Therrien F., Zelenitsky D. K., & Norell M. A. (2009).  Assignment of Yamaceratops dorngobiensis and Associated Redbeds at Shine Us Khudag (Eastern Gobi, Dorngobi Province, Mongolia) to the Redescribed Javkhlant Formation (Upper Cretaceous). Journal of Vertebrate Paleontology. 29, 295-302., Jan: Univ Nova Lisboa, Hokkaido Univ, Museu Lourinha, Amer Museum Nat Hist, Korean Inst Geosci & Mineral Resources, Royal Tyrell Museum, Royal Tyrell Museum, Univ Calgary Abstracteberth_et_al-2009-__assignment_of_yamaceratops_dorngobiensis_and_associated_redbeds_at_shine_us_khudag_eastern_gobi_dorngobi_province_mongolia_to_the_redescribed_javkhlant_formation_upper_cretaceous_javkhlant_fm.pdf

n/a

Jacobs, L. L., Mateus O., Polcyn M. J., Schulp A. S., Scotese C. R., Goswami A., Ferguson K. M., Robbins J. A., Vineyard D. P., & Neto A. B. (2009).  Cretaceous paleogeography, paleoclimatology, and amniote biogeography of the low and mid-latitude South Atlantic Ocean. BULLETIN DE LA SOCIETE GEOLOGIQUE DE FRANCE. 180, 333-341., Jan: Univ Agostinho Neto, Univ Nova Lisboa, So Methodist Univ, Univ Texas Arlington, Museu Lourinha, Nat Hist Museum Abstractjacobs_mateus_et_al_2009_cretaceous_paleogeography_paleoclimatology_and_amniote_biogeography_of_the_south_atlantic_ocean_angola_africa_currents.pdf

n/a

Jacobs, L., Polcyn M., Mateus O., Schulp A. S., & Neto A. B. (2009).  The Cretaceous Skeleton Coast of Angola. Journal of Vertebrate Paleontology. 29, 121A., Jan Abstractjacobs_et_al_2009cretaceousskeletoncoas.pdfWebsite

n/a

Tomas, C., Mateus O., & Abreu C. (2009).  Dinolourinhã; a integração dos jovens na paleontologia: o caso-estudo do Museu da Lourinhã. Journal of Paleontological Techniques 5: 28-29.. 28-29., Jan Abstracttomas_et_al_2009_dinolourinha_abstracts_jpt.pdf

n/a

authors listed, N. (2009).  International Conference on the Geological Collections and Museums: mission and management.. (Brandao J, Callapez P, Mateus O, Castro P, Ed.). , Jan: Journal of Paleontological Techniques 5 (special volume) Abstract
n/a
Mateus, O., Maidment S., & Christiansen N. (2009).  A new long-necked 'sauropod-mimic' stegosaur and the evolution of the plated dinosaurs. Proceedings of the Royal Society of London B. 276, 1815-1821., Jan Abstractmateus_et_al_2009_stegosaur_miragaia_complete_with_suppl.pdfWebsite

Stegosaurian dinosaurs have a quadrupedal stance, short forelimbs, short necks, and are generally considered to be low browsers. A new stegosaur, Miragaia longicollum gen. et sp. nov., from the Late Jurassic of Portugal, has a neck comprising at least 17 cervical vertebrae. This is eight additional cervical vertebrae when compared with the ancestral condition seen in basal ornithischians such as Scutellosaurus.
Miragaia has a higher cervical count than most of the iconically long-necked sauropod dinosaurs. Long neck length has been achieved by ‘cervicalization’ of anterior dorsal vertebrae and probable lengthening of centra. All these anatomical features are evolutionarily convergent with those exhibited in the necks of
sauropod dinosaurs. Miragaia longicollum is based upon a partial articulated skeleton, and includes the only known cranial remains from any European stegosaur. A well-resolved phylogeny supports a new clade that unites Miragaia and Dacentrurus as the sister group to Stegosaurus; this new topology challenges the common view of Dacentrurus as a basal stegosaur.

Mateus, O., Jacobs L., Polcyn M., Schulp A. S., Vineyard D., Neto A. B., & Antunes M. T. (2009).  The oldest African eucryptodiran turtle from the Cretaceous of Angola. Acta Palaeontologica Polonica. 54, 581-588., Jan: Univ Agostinho Neto, Univ Nova Lisboa, Museu Lourinha, Acad Ciencias Lisboa, Nat Hist Museum Maastricht, So Methodist Univ Abstractmateus_et_al_2009_the_oldest_african_angolachelys_angola_turtle.pdfWebsite

A new Late Cretaceous turtle, Angolachelys mbaxi gen. et sp. nov., from the Turonian (90 Mya) of Angola, represents the oldest eucryptodire from Africa. Phylogenetic analysis recovers Angolachelys mbaxi as the sister taxon of Sandownia harrisi from the Aptian of Isle of Wight, England. An unnamed turtle from the Albian Glen Rose Formation of Texas (USA) and the Kimmeridgian turtle Solnhofia parsonsi (Germany), are successively more distant sister taxa. Bootstrap analysis suggests those four taxa together form a previously unrecognized monophyletic clade of marine turtles, herein named Angolachelonia clade nov., supported by the following synapomorphies: mandibular articulation of quadrate aligned with or posterior to the occiput, and basisphenoid not visible or visibility greatly reduced in ventral view. Basal eucryptodires and angolachelonians originated in the northern hemisphere, thus Angolachelys represents one of the first marine amniote lineages to have invaded the South Atlantic after separation of Africa and South America.

Araújo, R., Mateus O., Walen A., & Christiansen N. (2009).  Preparation techniques applied to a stegosaurian Dinosaur from Portugal. Journal of Paleontological Techniques. 5, 1-24., Jan Abstractarajomateusetal2009.preparationtechn.pdfWebsite

General vertebrate paleontological techniques that have been used in the Museum of Lourinhã (Portugal) are presented here, in particular those applied to a stegosaurian dinosaur skeleton, Miragaia longicollum. A monolith jacket technique using polyurethane foam and plaster is presented. Mechanical preparation
techniques combining the use of an electric grinder and airscribes proved effective during the initial phases of preparation on well-preserved bone embedded in hard matrix. We also present a technique to mould monoliths in the early stages of preparation, creating a thin silicone rubber mould in several contiguous
parts. To mould and cast monoliths before removing individual bones has proven valuable for the preservation of taphonomic data and for display purposes. Polyurethane resin combined with plaster is useful for small casts, while polyester resin applied in four layers is the preferred technique for larger casts.
The four layers are composed of: a first thin layer of polyester resin with bone colour; followed by another layer of polyester resin of sediment colour and containing glass microspheres to make it thicker. The third layer is composed of fibre glass chopped strands, and the fourth is composed of fibre glass mats embedded
in plain polyester resin. 3D scanning and digitization techniques where tested for the storage of osteological information of individual bones and proved very promising.

Mateus, O. (2009).  The sauropod dinosaur Turiasaurus riodevensis in the Late Jurassic of Portugal. Journal of Vertebrate Paleontology. 29, 144A., Jan Abstractmateus_2009_sauropod_dinosaur_turiasaurus_portugal_svp09abstractspdf.pdfWebsite

A partial sauropod was found in 1996 in Vale Pombas, north of Lourinhã, Central West of Portugal, in the Lourinhã Formation, top of Amoreira Porto Novo member dated as c. 150 M.a. (Early Tithonian, Late Jurassic) and is currently housed at Museum of Lourinhã, in Portugal. The specimen (ML368) comprises a complete tooth with root, anterior chevron and almost complete right forelimb including partial scapula, complete coracoid, humerus, ulna, radius, metacarpals I, III and V, phalanx, and ungual phalanx I. It can be ascribed to Turiasaurus riodevensis, which was previously described from the Villar del Arzobispo
Formation at Riodeva (Teruel, Spain). Characters shared with T. riodevensis holotype include: curvature and asymmetry of tooth crown, expansion of crown, outline of humerus, medial deflection of the proximal end of humerus, shape and prominence of deltopectoral crest, vertical ridge in the distal half of the ulna (considered as diagnostic of Turiasauria), configuration of metacarpals, and bone proportions. It differs from T. riodevensis holotype by the smaller size and the more rectangular ungual phalanx in lateral view. The sediments from which the Riodeva specimen was recovered were previsouly thought to be Tithonian to Berriasian in age. The presence of this species in Portugal, in beds confidently dated as Early
Tithonian, may allow a more precise date for the Riodeva type locality of early Tithonian in age. The humerus of the Portuguese T. riodevensis is 152 cm long. Although shorter than the Spanish specimen (790 mm), it represents a large individual. All adult sauropods recovered in Portugal thus far are very large individuals: Dinheirosaurus (estimated body length is 20-25 m), Lusotitan (humerus length estimated to be 205 cm), Lourinhasaurus (femur length: 174 cm), and Turiasaurus here reported. The lack of of small or medium adult body-size sauropods in the Late Jurassic of Portugal, suggests browsing niches thought to be occupied by smaller forms, could be have been available for other dinosaurs, like the long necked stegosaur Miragaia longicollum.

Mateus, O. (2009).  Colecções paleontológicas do Museu da Lourinhã (Portugal) / Paleontological collections of the Museum of Lourinhã (Portugal). (Unknown Unknown, Ed.).Journal of Paleontological Techniques. 18–19.., 1 Abstract
n/a
Mateus, O. (2009).  The Cretaceous Skeleton Coast of Angola. Journal of Vertebrate Paleontology. 29, 121A., 1, Number 3: Taylor & Francis Abstract

THE CRETACEOUS SKELETON COAST OF ANGOLA JACOBS, Louis, SMU, Dallas, TX, USA; POLCYN, Michael, SMU, Dallas, TX, USA; MATEUS, Octávio, Museu da Lourinhã, Lourinhã, Portugal; SCHULP, Anne, Natuurhistorisch Museum Maastricht, Maastricht, Netherlands; NETO, André , Universidade Agostinho Neto, Luanda, Angola Cretaceous coastal sediments of Angola present a rich and diverse fauna of marine amniotes, including turtles, mosasaurs, and plesiosaurs. The abundance of mosasaurs in particular suggests a highly productive coastal area. Angola today lies at the northern limit of the Namibian Desert, the so-called Skeleton Coast, which results from prevailing southeasterly winds of the descending limb of the southern Hadley Cell sweeping across the African coast. The Benguela upwelling and a highly productive sea are found today off the Namibian Desert coast. However, the Benguela upwelling system, based on results of DSDP studies, is said to have originated in the late Neogene and therefore cannot explain the productivity found along the length of the West African coast. The explanation is found in the northward drift of Africa through the arid climate zone, and is demonstrated by the tracing of the paleogeographic position of fossil localities through time.

Mateus, O. (2009).  The Cretaceous Skeleton Coast of Angola. 29, , 1 Abstract
n/a
Mateus, O. (2009).  Dinolourinhã – a integração dos jovens na paleontologia: o caso-estudo do Museu da Lourinhã.. Journal of Paleontological Techniques. 28–29., 1 Abstract
n/a
Mateus, O. (2009).  DINOSAUR EGGSHELL AND EMBRYO LOCALITIES IN LOURINHA FORMATION, LATE JURASSIC, PORTUGAL. Journal of Vertebrate Paleontology. 29, 76A–76A., 1 Abstract
n/a
Mateus, O. (2009).  New specimens of Angolasaurus bocagei and comments on the early radiations of plioplatecarpine mosasaurs. Journal of Vertebrate Paleontology. Journal of Vertebrate Paleontology. 29, 165A., 1, Number 3: Taylor & Francis Abstract

NEW SPECIMENS OF ANGOLASAURUS BOCAGEI AND COMMENTS ON THE EARLY RADIATIONS OF PLIOPLATECARPINE MOSASAURS POLCYN, Michael, SMU, Dallas, TX, USA; JACOBS, Louis, SMU, Dallas, TX, USA; MATEUS, Octávio, Museu da Lourinhã, Lourinhã, Portugal; SCHULP, Anne, Natuurhistorisch Museum Maastricht, Maastricht, Netherlands New, well preserved material of the Turonian mosasaur Angolasaurus bocagei from the Tadi Beds of the Itombe Formation in northern Angola, allows detailed redescription of its morphology and reassessment of its phylogenetic relationships. Angolasaurus had been previously referred to the genus Platecarpus; however, phylogenetic analysis confirms the valid taxonomic status of A. bocagei, and reconstructs that taxon within a clade that also includes the genera Selmasaurus and Ectenosaurus. These forms are united by an elaborated infrastapedial process of the quadrate and a unique ridge-like descending process of the parietal forming the supraoccipital articulation, but also retain a relatively plesiomorphic configuration of the braincase. That clade is united with all other plioplatecarpines by a number of derived characters including the presence of a novel basicranial circulation pattern. In Africa, North and South America, early plioplatecarpines are known by the Middle Turonian and Angolasaurus and closely related forms appear by the Upper Turonian. Selmasaurus and Ectenosaurus are a rare faunal component of the Santonian and Campanian of North America. Platecarpus planifrons appears in the Coniacian of North America and represents the plesiomorphic condition of the clade containing the remaining species of Platecarpus and Plioplatecarpus, that appears in the Santonian and persist until the end of the Cretaceous, reaching global distribution. The temporal and geographic distribution of these radiations suggest influence of paleogeography and eustatic sea levels.

Mateus, O. (2009).  Preparation techniques applied to a stegosaurian Dinosaur from Portugal. Journal of Paleontological Techniques. 5, 1–24., 1, Number NA Abstract
n/a
Mateus, O. (2009).  The sauropod Turiasaurus riodevensis in the Late Jurassic of Portugal. Journal of Vertebrate Paleontology. 29, 144A., 1, Number 3: Taylor & Francis Abstract

THE SAUROPOD DINOSAUR TURIASAURUS RIODEVENSIS IN THE LATE JURASSIC OF PORTUGAL MATEUS, Octávio, New University of Lisbon (CICEGe-FCT) & Museum of Lourinhã, Lisboa, Portugal A partial sauropod was found in 1996 in Vale Pombas, north of Lourinhã, Central West of Portugal, in the Lourinhã Formation, top of Amoreira Porto Novo member dated as c. 150 M.a. (Early Tithonian, Late Jurassic) and is currently housed at Museum of Lourinhã, in Portugal. The specimen (ML368) comprises a complete tooth with root, anterior chevron and almost complete right forelimb including partial scapula, complete coracoid, humerus, ulna, radius, metacarpals I, III and V, phalanx, and ungual phalanx I. It can be ascribed to Turiasaurus riodevensis, which was previously described from the Villar del Arzobispo Formation at Riodeva (Teruel, Spain). Characters shared with T. riodevensis holotype include: curvature and asymmetry of tooth crown, expansion of crown, outline of humerus, medial deflection of the proximal end of humerus, shape and prominence of deltopectoral crest, vertical ridge in the distal half of the ulna (considered as diagnostic of Turiasauria), configuration of metacarpals, and bone proportions. It differs from T. riodevensis holotype by the smaller size and the more rectangular ungual phalanx in lateral view. The sediments from which the Riodeva specimen was recovered were previsouly thought to be Tithonian to Berriasian in age. The presence of this species in Portugal, in beds confidently dated as Early Tithonian, may allow a more precise date for the Riodeva type locality of early Tithonian in age. The humerus of the Portuguese T. riodevensis is 152 cm long. Although shorter than the Spanish specimen (790 mm), it represents a large individual. All adult sauropods recovered in Portugal thus far are very large individuals: Dinheirosaurus (estimated body length is 20- 25 m), Lusotitan (humerus length estimated to be 205 cm), Lourinhasaurus (femur length: 174 cm), and Turiasaurus here reported. The lack of of small or medium adult body-size sauropods in the Late Jurassic of Portugal, suggests browsing niches thought to be occupied by smaller forms, could be have been available for other dinosaurs, like the long necked stegosaur Miragaia longicollum.

Castanhinha, R., Araújo R., & Mateus O. (2009).  Dinosaur eggshell and embryo localities in Lourinhã Formation, Late Jurassic, Portugal. Journal of Vertebrate Paleontology, 29(3): . 76A. Abstractcastanhinhaetal2009dinosaureggshellp.pdf

Four different localities from the Late Jurassic of Lourinhã formation with eggshells and embryos were studied: Paimogo (lower Amoreira-Porto Novo member), Peralta (Praia Azul member), Porto das barcas (Bombarral member) and Casal da Rôla (Amoreira-Porto Novo member). All but Casal da Rôla have embryonic material. Preliminary results show that eggshells from Paimogo correspond to obliquiprismatic morphotype (0.92mm thick), similar to those from Morrison Formation. Within Paimogo site a different type of eggshell was discovered, having a radial section of 153 μm with a mammilary layer measuring 65 μm. Porto das Barcas eggshells represent a discretispherulitic morphotype (1,23 mm thick).
This locality presents a nest 60-cm diameter containing many eggshells but an indeterminate number of eggs. Some embryonic bones were discovered between the eggshells including teeth and skull bones showing that the eggs belong to a saurischian, tentatively a sauropod dinosaur. Peralta nest eggshells are preliminary ascribed to obliquiprismatic morphotype (column: 0,56mm and mammilla: 0,21mm) probably related to Paimogo’s nest taxon (Lourinhanosaurus). Peralta site bears embryonic bones namely small theropod teeth associated with bone fragments, and unidentifiable dinosaur vertebra. Only eggshells have been collected at Casal da Rôla (ML1194). The eggshells (0,78mm thick) are prismatic morphotype and it was impossible to determine the pore system, the outer surface is smooth with no ornamentation.
Lourinhã formation has the oldest sauropod and theropod nest with embryos known so far.

Vineyard, D. P., Jacobs L. L., Polcyn M. J., Mateus O., Schulp A. S., & Strganac C. (2009).  Euclastes from the Maastrichtian of Angola and the distribution of the Angolachelonia. Eugene Gaffney Turtle Symposium. , Royal Tyrrell Museum
Jacobs, L. L., Mateus O., Polcyn M. J., Schulp A. S., Scotese C. R., Goswami A., Ferguson K. M., Robbins J. A., Vineyard D. P., & Neto A. B. (2009).  Cretaceous paleogeography, paleoclimatology, and amniote biogeography of the low and mid-latitude South Atlantic Ocean. Bulletin de la Societe Geologique de France. 180, 333-341., Number 4 Abstract
n/a
Jacobs, L., Polcyn M., Mateus O., Schulp, & Neto A. (2009).  The Cretaceous Skeleton Coast of Angola. Journal of Vertebrate Paleontology. 29, 121., Number 3 Abstract
n/a
Jacobs, L. L., Polcyn M. J., Mateus O., Schulp A. S., & Neto A. (2009).  The Cretaceous Skeleton Coast of Angola. Journal of Vertebrate Paleontology. 29, 121–121., Number 3 Abstract
n/a
Tomas, C., Mateus O., & Abreu C. (2009).  Dinolourinhã – a integração dos jovens na paleontologia: o caso-estudo do Museu da Lourinhã.. Journal of Paleontological Techniques 5: 28-29.. Abstract
n/a
Castanhinha, R., Araujo R., & Mateus O. (2009).  Dinosaur eggshell and embryo localities in Lourinhã Formation, Late Jurassic, Portugal. Journal of Vertebrate Paleontology. 29, 76., Number 3 Abstract
n/a
Castanhinha, R., Araujo R., & Mateus O. (2009).  Dinosaur eggshell and embryo localities in Lourinhã Formation, Late Jurassic, Portugal. Journal of Vertebrate Paleontology. 29, 76–76., Number 3 Abstract
n/a
Brandao, J., Callapez, P., O. Mateus, Castro, P (Eds.). (2009).  International Conference on the Geological Collections and Museums: mission and management. Abstract
n/a
Mateus, O., Maidment S. C. R., & Christiansen N. A. (2009).  A new long-necked {'}sauropod-mimic{'} stegosaur and the evolution of the plated dinosaurs. Proceedings of the Royal Society B: Biological Sciences. 276, 1815-1821., Number 1663 Abstract
n/a
Polcyn, M., Jacobs L., Mateus O., & Schulp A. (2009).  New specimens of Angolasaurus bocagei and comments on the early radiations of plioplatecarpine mosasaurs. Journal of Vertebrate Paleontology. Journal of Vertebrate Paleontology. 29, 165., Number 3 Abstract
n/a
Polcyn, M. J., Jacobs L. L., Mateus O., & Schulp A. S. (2009).  New specimens of Angolasaurus bocagei and comments on the early radiations of plioplatecarpine mosasaurs. Journal of Vertebrate Paleontology. Journal of Vertebrate Paleontology. 29, 165–165., Number 3 Abstract
n/a
Mateus, O., Jacobs L., Polcyn M., Schulp A. S., Vineyard D., Buta Neto A., & Telles Antunes M. (2009).  The oldest African eucryptodiran turtle from the Cretaceous of Angola. Acta Palaeontologica Polonica. 54, 581-588., Number 4 Abstract
n/a
Araujo, R., Mateus O., Walen A., & Christiansen N. (2009).  Preparation techniques applied to a stegosaurian Dinosaur from Portugal: excavation, laboratory mechanical and chemical preparation, moulding and casting, 3D scanning. Journal of Paleontological Techniques 5: 22.. 22. Abstract
n/a
Mateus, O. (2009).  The sauropod Turiasaurus riodevensis in the the Late Jurassic of Portugal. Journal of Vertebrate Paleontology. 29, 144., Number 3 Abstract
n/a
Mateus, O. (2009).  The sauropod Turiasaurus riodevensis in the the Late Jurassic of Portugal. Journal of Vertebrate Paleontology. 29, 144–144., Number 3 Abstract
n/a
2008
Mateus, O., Natário C., Araújo R., & Castanhinha R. (2008).  A new specimen of spinosaurid dinosaur aff. Baryonyx from the Early Cretaceous of Portugal. Livro de Resumos do X Congresso Luso-Espanhol de Herpetologia. 51., Jan Abstract

n/a

Mateus, O. (2008).  Checklist for Late Jurassic reptiles and amphibians from Portugal. Livro de Resumos do X Congresso Luso-Espanhol de Herpetologia. 55., Coimbra Abstractmateus_2008_lista_de_repteis_e_anfibios_do_jurassico_superior_de_portugal__list_congressoherpetolog.pdf

The richness of Late Jurassic vertebrates in Portugal is known since the 19th century by Paul Choffat, Henri Sauvage and other. The Kimmeridgian Guimarota fauna assemblage is the best known, followed by the fauna of Lourinhã formation. Here is presented an attempt to provide a checklist of the reptiles and amphibians of the Late Jurassic. Amphibia: Lissamphibia (Celtedens, cf. Marmorerpeton, Discoglossidae indet.). Chelonia: Eucryptodira (Pleurosternidae indet., Platychelyidae indet., Plesiochelys cf. etalloni, Plesiochelys choffati, Anosteirinae indet.). Squamata: Scincomorpha (Becklesius hoffstetteri; Paramacellodus sp., Saurillodon proraformis, S. henkeli, S. cf. obtusus). Squamata: Anguimorpha (Dorsetisaurus pollicidens, Parviraptor estesi). Crown Lepidosauromorpha (Marmoretta sp.). Choristodera: Cteniogenidae (Ctenogenys reedi). Sauropterygia: Plesiosauria: Cryptoclidoidea: Cryptoclididae indet. Crocodylomorpha (Lisboasaurus estesi, L. mitrocostatus). Crocodyliformes: Neosuchia (Machimosaurus hugii, Goniopholis cf. simus, Goniopholis baryglyphaeus, cf. Bernissartia, Atoposauridae, Theriosuchus guimarotae, cf. Alligatorium, Metriorhynchus sp.). Pterosauria (Rhamphorhynchus sp., Pterodactylus sp.). Dinosauria: Theropoda (Ceratosaurus sp. , Torvosaurus sp., Lourinhanosaurus antunesi, Allosaurus europaeus, Cf. Compsognathus sp., cf. Richardoestesia sp., Dromaeosaurinae indeter., Velociraptorinae indeter., cf. Archaeopteryx sp., aff. Paronychodon). Dinosauria: Sauropoda: Eusauropoda (Dinheirosaurus lourinhanensis, Lourinhasaurus alenquerensis, Lusotitan atalaiensis, Apatosaurus sp.). Dinosauria: Ornithischia: Thyreophora (Dacentrurus armatus, Stegosaurus sp., Dracopelta zbyszewskii). Dinosauria: Ornithischia: Ornithopoda (Phyllodon henkeli, Dryosaurus sp., Hypsilophodon sp., Alocodon kuehnei, Trimucrodon cuneatus, Draconyx loureiroi).

Hayashi, S., Carpenter K., Watabe M., Mateus O., & Barsbold R. (2008).  Defensive weapons of thyreophoran dinosaurs: histological comparisons and structural differences in spikes and clubs of ankylosaurs and stegosaurs. Journal of Vertebrate Paleontology. 28(3, Supplement), 89A-90A., Number Suppl. to 3 Abstracthayashi_et_al_2008_histology_stegosaurs_defensive_weapons_of_thyreophoran_dinosaurs-_histological_comparisons_and_structural_differences_in_spikes_and_clubs_of_ankylosaurs_and_stegosaurs.pdfWebsite

Thyreophoran dinosaurs have spike- and club-shaped osteoderms probably used for defensive weapons. The structural and histological variations have been little known. Here, we provide the comparisons of the internal structures in defensive weapons of ankylosaurs and stegosaurs, using spikes of a polacanthid (Gastonia) and a nodosaurid (Edmontonia), clubs of ankylosaurids (Saichania and Ankylosauridae indet. from Canada), and spikes of stegosaurids (Stegosaurus and Dacentrurus), which sheds light on understandings of evolutionary history and functional implications of defensive weapons in thyreophorans. In ankylosaurs, the structural and histological features of spikes and clubs are similar with those of small osteoderms in having thin compact bones, thick cancellous bones with large vascular canals, and abundant collagen fibers. A previous study demonstrated that each of three groups of ankylosaurs (polacanthid, nodosaurid, and ankylosaurid) has distinct characteristic arrangements of collagen fibers in small osteoderms. This study shows that spikes and clubs of ankylosaurs maintain the same characteristic features for each group despite of the differences in shapes and sizes. Conversely, the spike-shaped osteoderms in primitive (Dacentrurus) and derived (Stegosaurus) stegosaurids have similar structure to each other and are significantly different from the other types of stegosaur osteoderms (throat bony ossicles and plates) in having thick compact bones with a medullary cavity. These lack abundant collagen fibers unlike ankylosaur osteoderms. The spikes of ankylosaurs and stegosaurs are similar in shape, but their structural and histological features are different in having unique structures of collagen fibers for ankylosaurs and thick compact bones for stegosaurs, providing enough strength to have large spikes and to use them as defensive weapons. Although the shapes of ankylosaur clubs are different from spikes, the internal structures are similar, suggesting that ankylosaurs maintain similar structures despite of different shapes in osteoderms. These results indicate that ankylosaurs and stegosaurs used different strategies independently to evolve defensive weapons.

Mateus, O., Jacobs L. L., Polcyn M. J., Schulp A. S., Neto A. B., & Antunes M. T. (2008).  Dinosaur and turtles from the Turonian of Iembe, Angola. Livro de Resumos de Tercer Congreso Latinoamericano de Paleontologia de Vertebrados. 156., Neuquén, Argentina Abstractmateus_et_al_2008_dinosaur_and_turtles_from_the_turonian_of_iembe_angola.pdf

n/a