Tracks - Footprints

Showing results in 'Publications'. Show all posts
Guillaume, A. R. D., Costa F., & Mateus O. (2022).  Stegosaur tracks from the Upper Jurassic of Portugal: new occurrences and perspectives. Ciências da Terra / Earth Sciences Journal. 20(1), 37-60. Abstractguillaumeetal.pdf

The record of Late Jurassic stegosaur tracks from the Lourinhã Formation (Kimmeridgian-Tithonian) is here revised. Thirty-eight dinosaur tracks, preserved as natural infill casts, are here reported, and thirty-two of them are attributed to the ichnogenus Deltapodus. Four of those present impressions of skin, with polygonal scales and random pattern. Deltapodus is the most common ichnogenus in the track record of the Lourinhã Formation. The sizes and shape suggest one single dacentrurine trackmaker, which could be Miragaia longicollum, also common in the same horizons.

Jackson, Y., Economos R., Jacobs L., Mateus O., & Gonçalves A. O. (2021).  When Dinosaurs Walked Through Diamonds: Constraining the Age of Early Cretaceous Footprints in Volcanic Crater Sediments. SMU Journal of Undergraduate Research. 6(1), : DOI: 10.25172/jour.6.1.1 Available at: https://scholar.smu … Abstractwhen_dinosaurs_walked_through_diamonds.pdf


Marques, M. I. F., & Mateus O. (2021).  Dinosaur tracksites from Portugal, focused on the carbonated platform of North and Central Lusitanian Basin. 3rd Palaeontological Virtual Congress. 210.: ISBN 978-84-09-36657-6 Abstractmarques_mateus_2021_pvc3_tracks.pdf


Mateus, O., Marzola M., Schulp A. S., Jacobs L. L., Polcyn M. J., Pervov V., Gonçalves A. O., & Morais M. L. (2017).  Angolan ichnosite in a diamond mine shows the presence of a large terrestrial mammaliamorph, a crocodylomorph, and sauropod dinosaurs in the Early Cretaceous of Africa. Palaeogeography, Palaeoclimatology, Palaeoecology. 471, 220 - 232. Abstractmateus_et_al_2017_angolan_ichnosite_catoca.pdfWebsite

Abstract We report here new and the first mammaliamorph tracks from the Early Cretaceous of Africa. The tracksite, that also bears crocodylomorph and sauropod dinosaurian tracks, is in the Catoca diamond mine, Lunda Sul Province, Angola. The mammaliamorph tracks have a unique morphology, attributed to Catocapes angolanus ichnogen. et ichnosp. nov. and present an anterolateral projection of digit I and V. The tracks with an average length of 2.7 cm and width of 3.2 cm are the largest mammaliamorph tracks known from the Early Cretaceous unmatched in size in the skeletal fossil record. The crocodylomorph trackways and tracks are attributed to Angolaichnus adamanticus ichnogen. et ichnosp. nov. (‘ichnofamily’ Batrachopodidae) and present a functionally pentadactyl pes, an extremely outwardly rotated handprint, and an unusual tetradactyl and plantigrade manus. One medium-sized sauropod dinosaur trackway preserved skin impressions of a trackmaker with stride length of 1.6 m; a second is that of a small-sized sauropod trackmaker with a pace length of 75 cm.

Lallensack, J. N., Klein H., Milàn J., Wings O., Mateus O., & Clemmensen L. B. (2017).  Sauropodomorph dinosaur trackways from the Fleming Fjord Formation of East Greenland: Evidence for Late Triassic sauropods. Acta Palaeontologica Polonica. 62(4), 833-843. Abstractlallensack_et_al_2017_-_sauropodomorph_tracks_greenland.pdf

The Late Triassic (Norian–early Rhaetian) Fleming Fjord Formation of central East Greenland preserves a diverse fossil fauna, including both body and trace fossils. Trackways of large quadrupedal archosaurs, although already reported in 1994 and mentioned in subsequent publications, are here described and figured in detail for the first time, based on photogrammetric data collected during fieldwork in 2012. Two trackways can be referred to Eosauropus, while a third, bipedal trackway may be referred to Evazoum, both of which have been considered to represent sauropodomorph dinosaur tracks. Both the Evazoum and the Eosauropus trackways are distinctly larger than other trackways referred to the respective ichnogenera. The trackmaker of the best preserved Eosauropus trackway is constrained using a synapomorphy-based approach. The quadrupedal posture, the entaxonic pes structure, and five weight-bearing digits indicate a derived sauropodiform trackmaker. Other features exhibited by the tracks, including the semi-digitigrade pes and the laterally deflected unguals, are commonly considered synapomorphies of more exclusive clades within Sauropoda. The present trackway documents an early acquisition of a eusauropod-like pes anatomy while retaining a well-developed claw on pedal digit IV, which is reduced in eusauropods. Although unequivocal evidence for sauropod dinosaurs is no older than the Early Jurassic, the present trackway provides evidence for a possible Triassic origin of the group.

Leal, A. A., Dionísio A., Braga M. A. S., & Mateus O. (2016).  The long term preservation of Late Jurassic sandstone dinosaur footprints in a museum environment. International Journal of Conservation Science. 7(3), 627-646. AbstractWebsite

This study focuses on the assessment of the degradation processes occurring in three sandstone infills of fossilized Late Jurassic ornithopod tridactyl footprints, found in 2001 in a coastline cliff in Porto das Barcas (Lourinhã, Portugal) and exhibited in a museum display since 2004. These dinosaur footprints present nowadays severe decay phenomena compromising their physical integrity and are leading gradually to their loss of value. The deterioration patterns were recorded, a map of their distribution was prepared and several samples were collected both in the dinosaur footprints and in the coastline cliff. Different analytical procedures were applied such as XRD, FTIR, FESEM and Ion Chromatography. A microclimatic survey was also performed and air temperature and relative humidity was measured during eight months both indoor and also outdoor. The decay patterns observed are a combination intrinsic and extrinsic factors the stone material, namely swelling of clay minerals in the rock matrix (smectite and chlorite-smectite mixed-layer), presence of salts (mainly chlorides), application of past conservation treatments (poly(vinyl) acetate and epoxy resins) and with the museum's indoor thermohygrometric conditions (mainly non-stable hygrometric conditions). This scientific knowledge is therefore essential to the sustainable preservation of this paleontological heritage.

Klein, H., Milàn J., Clemmensen L. B., Frobøse N., Mateus O., Klein N., Adolfssen J. S., Estrup E. J., & Wings O. (2016).  Archosaur footprints (cf. Brachychirotherium) with unusual morphology from the Upper Triassic Fleming Fjord Formation (Norian–Rhaetian) of East Greenland. Geological Society, London, Special Publications. 434(1), 71-85. Abstractklein_et_al_2015_archosaur_footprints_cf._brachychirotherium_with_unusual.pdfWebsite

The Ørsted Dal Member of the Upper Triassic Fleming Fjord Formation in East Greenland is well known for its rich vertebrate fauna, represented by numerous specimens of both body and ichnofossils. In particular, the footprints of theropod dinosaurs have been described. Recently, an international expedition discovered several slabs with 100 small chirotheriid pes and manus imprints (pes length 4–4.5 cm) in siliciclastic deposits of this unit. They show strong similarities with Brachychirotherium, a characteristic Upper Triassic ichnogenus with a global distribution. A peculiar feature in the Fleming Fjord specimens is the lack of a fifth digit, even in more deeply impressed imprints. Therefore, the specimens are assigned here tentatively to cf. Brachychirotherium. Possibly, this characteristic is related to the extremely small size and early ontogenetic stage of the trackmaker. The record from Greenland is the first evidence of this morphotype from the Fleming Fjord Formation. Candidate trackmakers are crocodylian stem group archosaurs; however, a distinct correlation with known osteological taxa from this unit is not currently possible. While the occurrence of sauropodomorph plateosaurs in the bone record links the Greenland assemblage more closer to that from the Germanic Basin of central Europe, here the described footprints suggest a Pangaea-wide exchange.Supplementary material: Three-dimensional model of cf. Brachychirotherium pes–manus set (from MGUH 31233b) from the Upper Triassic Fleming Fjord Formation (Norian–Rhaetian) of East Greenland as pdf, ply and jpg files (3D model created by Oliver Wings; photographs taken by Jesper Milàn) is available at

Marzola, M., Mateus O., Schulp A. S., Jacobs L. L., Polcyn M. J., Pervov V., Goncalves A. O., & Morais M. L. (2015).  Comparative anatomy and systematics of Cretaceous mammal tracks of Angola. 13th Annual Meeting of the European Association of Vertebrate Palaeontologists - EAVP 2015. , July 2015, Opole, Poland: European Association of Vertebrate Palaeontologistsmarzola_et_al_2015_catoca_tracks_eavp.pdf
Xing, L., Lockley M. G., Marty D., Zhang J., Wang Y., Klein H., McCrea R. T., Buckley L. G., Belvedere M., Mateus O., Gierliński G. D., Piñuela L., Persons, IV S. W., Wang F., Ran H., Dai H., & Xie X. (2015).  An Ornithopod-Dominated Tracksite from the Lower Cretaceous Jiaguan Formation (Barremian–Albian) of Qijiang, South-Central China: New Discoveries, Ichnotaxonomy, Preservation and Palaeoecology. PLoS ONE. 10, e0141059., 10, Number 10: Public Library of Science Abstractlida_et_al_2015_an_ornithopod-dominated_tracksite_from_the.pdfWebsite

The historically-famous Lotus Fortress site, a deep 1.5–3.0-meter-high, 200-meter-long horizonal notch high up in near-vertical sandstone cliffs comprising the Cretaceous Jiaguan Formation, has been known since the 13th Century as an impregnable defensive position. The site is also extraordinary for having multiple tetrapod track-bearing levels, of which the lower two form the floor of part of the notch, and yield very well preserved asseamblages of ornithopod, bird (avian theropod) and pterosaur tracks. Trackway counts indicate that ornithopods dominate (69%) accounting for at least 165 trackmakers, followed by bird (18%), sauropod (10%), and pterosaur (3%). Previous studies designated Lotus Fortress as the type locality of Caririchnium lotus and Wupus agilis both of which are recognized here as valid ichnotaxa. On the basis of multiple parallel trackways both are interpreted as representing the trackways of gregarious species. C. lotus is redescribed here in detail and interpreted to indicate two age cohorts representing subadults that were sometimes bipedal and larger quadrupedal adults. Two other previously described dinosaurian ichnospecies, are here reinterpreted as underprints and considered nomina dubia. Like a growing number of significant tetrapod tracksites in China the Lotus Fortress site reveals new information about the composition of tetrapod faunas from formations in which the skeletal record is sparse. In particular, the site shows the relatively high abundance of Caririchium in a region where saurischian ichnofaunas are often dominant. It is also the only site known to have yielded Wupus agilis. In combination with information from other tracksites from the Jiaguan formation and other Cretaceous formations in the region, the track record is proving increasingly impotant as a major source of information on the vertebrate faunas of the region. The Lotus Fortress site has been developed as a spectacular, geologically-, paleontologically- and a culturally-significant destination within Qijiang National Geological Park.

Leal, A. S., Mateus O., Tomás C., & Dionísio A. (2014).  Decay and conservation trial of Late Jurassic sandstone with dinosaur tracks in a museum environment (Museum of Lourinhã, Portugal). Buletini i Shkencave Gjeologjike. 1(2014), 410. Abstractleal_et_al_2014_cbgassav1-_abstract_dinosaur_footprints__page_410.pdf

Late Jurassic dinosaur footprints were found on a coastline cliff in Lourinhã, Porto das Barcas, Lagido do Forno (coordinate 39°14.178’N, 9°20.397’W, Portugal) in June 2001. The locality is characterized by steep cliffs with high slopes that are composed of gray and red sandstones/ siltstones. The location belongs to the successions of Lusitanian Basin representing the Porto Novo Member of the Lourinhã Formation. Three natural infills of tridactyl tracks, possibly ascribed to ornithopod, a bipedal herbivore were found, representing a left foot movement, a right and a left one, respectively. Footprints are 300- 400mm wide and have a height of 330-360mm. The footprints are characterized by round fingers, which are elongated due to some degradation/ erosion. The footprints were collected from the field in 2001 and subsequently cleaned, consolidated and glued in the laboratory of the Museum of Lourinhã before being exhibited in a museum display. Stone matrix was removed and a consolidation product was applied, probably a polyvinyl acetate. The footprint with broken central digit was glued with an epoxy resin, Araldite. Both applied products were confirmed by analysis of μ- FTIR and both presented colour change and detachment surface problems. The footprints have been exposed in the palaeontology hall of the Museum of Lourinhã, Portugal from 2004 without climate controlling. These trace fossils form an important part of the palaeontological collection of Late Jurassic vertebrate fossils from Lourinhã Formation. Presently, it is considered a unique heritage in danger of disappearing due to high decay level of disaggregation of its geological structure. The footprints display several pathologies, such as “Blistering”, “Powdering”, “Exfoliation”’ as well as “Dirt”, “Fracture”’, “Inscriptions”, “Consolidants” and “Adhesives” and are now in very poor conditions. Laboratorial analysed were made to evaluate the presence of salts. Moreover a microclimatic study was conducted inside the museum to evaluate the influence of thermo-hygrometric parameters on the decay processes. The future interventions will depend on the results of consolidation trials that are currently under progress by using stone samples taken from the same layer and location from Porto das Barcas applying different commercial consolidation products.