Publications

Export 631 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Marzola, M., Mateus O., Schulp A. S., Jacobs L. L., Polcyn M. J., Pervov V., Goncalves A. O., & Morais M. L. (2015).  Comparative anatomy and systematics of Cretaceous mammal tracks of Angola. 13th Annual Meeting of the European Association of Vertebrate Palaeontologists - EAVP 2015. , Opole, Poland Abstract
n/a
Marzola, M., Mateus O., Schulp {A. S. }, Jacobs {L. L. }, Polcyn {M. J. }, Pervov V., Goncalves {A. O. }, & Morais {M. L. } (2015).  Comparative anatomy and systematics of Cretaceous mammal tracks of Angola. 35. Abstract
n/a
Hansen, B. B., Milàn J., Clemmensen L. B., Adolfssen J. S., Estrup E. J., Klein N., Mateus O., & Wings O. (2015).  Coprolites from the Late Triassic Kap Stewart Formation, Jameson Land, East Greenland: morphology, classification and prey inclusions. Geological Society, London, Special Publications. 434, AbstractWebsite

A large collection of vertebrate coprolites from black lacustrine shales in the Late Triassic (Rhaetian–Sinemurian) Kap Stewart Formation, East Greenland is examined with regard to internal and external morphology, prey inclusions, and possible relationships to the contemporary vertebrate fauna. A number of the coprolites were mineralogically examined by X-ray diffraction (XRD), showing the primary mineral composition to be apatite, clay minerals, carbonates and, occasionally, quartz in the form of secondary mineral grains. The coprolite assemblage shows multiple sizes and morphotypes of coprolites, and different types of prey inclusions, demonstrating that the coprolite assemblage originates from a variety of different producers.Supplementary material: A description of the size, shape, structure, texture, contents and preservation of the 328 specimens is available at https://doi.org/10.6084/m9.figshare.c.2134335

Mateus, O., Jacobs L. L., Polcyn {M. J. }, Myers T. S., & Schulp A. S. (2015).  The fossil record of testudines from Angola from the Turonian to Oligocene. : Journal of Vertebrate Paleontology Abstract
n/a
Marzola, M., Russo J., & Mateus O. (2015).  Identification and comparison of modern and fossil crocodilian eggs and eggshell structures. Historical Biology. 27, 115-133., Number 1 Abstract
n/a
Pereira, B. C., Benton M. J., Ruta M., & Mateus O. (2015).  Mesozoic echinoid diversity in Portugal: Investigating fossil record quality and environmental constraints on a regional scale. Palaeogeography, Palaeoclimatology, Palaeoecology. 424, 132-146. Abstract
n/a
Brusatte, S. L., Butler R. J., Mateus O., & Steyer J. S. (2015).  A new species of Metoposaurus from the Late Triassic of Portugal and comments on the systematics and biogeography of metoposaurid temnospondyls. Journal of Vertebrate Paleontology. 35, , Number 3 Abstract
n/a
Hendrickx, C., Aráujo R., & Mateus O. (2015).  The non-avian theropod quadrate I: Standardized terminology with an overview of the anatomy and function. PeerJ. 2015, , Number 9 Abstract
n/a
Xing, L., Lockley M. G., Marty D., Zhang J., Wang Y., Klein H., McCrea R. T., Buckley L. G., Belvedere M., Mateus O., Gierli?ski G. D., Piñuela L., Persons W. S., Wang F., Ran H., Dai H., & Xie X. (2015).  An ornithopod-dominated tracksite from the lower Cretaceous Jiaguan Formation (Barremian-Albian) of Qijiang, South-Central China: New discoveries, ichnotaxonomy, preservation and palaeoecology. PLoS ONE. 10, , Number 10 Abstract
n/a
Hendrickx, C., Hartman S. A., & Mateus O. (2015).  An overview of non-avian theropod discoveries and classification. PalArch’s Journal of Vertebrate Palaeontology. 12, 1-73. AbstractWebsite

Theropods form a taxonomically and morphologically diverse group of dinosaurs that include extant birds. Inferred relationships between theropod clades are complex and have changed dramatically over the past thirty years with the emergence of cladistic techniques. Here, we present a brief historical perspective of theropod discoveries and classification, as well as an overview on the current systematics of non-avian theropods. The first scientifically recorded theropod remains dating back to the 17th and 18th centuries come from the Middle Jurassic of Oxfordshire and most likely belong to the megalosaurid Megalosaurus. The latter was the first theropod genus to be named in 1824, and subsequent theropod material found before 1850 can all be referred to megalosauroids. In the fifty years from 1856 to 1906, theropod remains were reported from all continents but Antarctica. The clade Theropoda was erected by Othniel Charles Marsh in 1881, and in its current usage corresponds to an intricate ladder-like organization of ‘family’ to ‘superfamily’ level clades. The earliest definitive theropods come from the Carnian of Argentina, and coelophysoids form the first significant theropod radiation from the Late Triassic to their extinction in the Early Jurassic. Most subsequent theropod clades such as ceratosaurs, allosauroids, tyrannosauroids, ornithomimosaurs, therizinosaurs, oviraptorosaurs, dromaeosaurids, and troodontids persisted until the end of the Cretaceous, though the megalosauroid clade did not extend into the Maastrichtian. Current debates are focused on the monophyly of deinonychosaurs, the position of dilophosaurids within coelophysoids, and megaraptorans among neovenatorids. Some recent analyses have suggested a placement of dilophosaurids outside Coelophysoidea, Megaraptora within Tyrannosauroidea, and a paraphyletic Deinonychosauria with troodontids placed more closely to avialans than dromaeosaurids.

Hendrickx, C., Hartman S. A., & Mateus O. (2015).  An overview of non-avian theropod discoveries and classification. PalArch{'}s Journal of Vertebrate Palaeontology. 12, 1-73., Number 1 Abstract
n/a
Hendrickx, C., Hartman S. A., & Mateus O. \á\}vio (2015).  An overview of non-avian theropod discoveries and classification. PalArch\’\}s Journal of Vertebrate Palaeontology. 12, 1-73. Abstract
n/a
Hendrickx, C., Hartman S. A., & Mateus O. \á\}vio (2015).  An overview of non-avian theropod discoveries and classification. PalArch\’\}s Journal of Vertebrate Palaeontology. 12, 1-73. Abstract
n/a
Hendrickx, C., Mateus O., & Araujo R. (2015).  A proposed terminology of theropod teeth (Dinosauria, Saurischia). Journal of Vertebrate Paleontology. 35, , Number 5 Abstract
n/a
Tschopp, E., Mateus O., & Benson R. B. J. (2015).  A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda). {PeerJ}. 3, e857.: {PeerJ} AbstractWebsite
n/a
Polcyn, {M. J. }, Jacobs L. L., Schulp A. S., & Mateus O. (2015).  Tethyan and Weddellian biogeographic mixing in the Maastrichtian of Angola. : Journal of Vertebrate Paleontology Abstract
n/a
Polcyn, {M. J. }, Jacobs {L. L. }, Schulp {A. S. }, & Mateus O. (2015).  Trolling the Cretaceous Seas: Marine Amniotes of Two West Coast Margins. : Geological Society of America Abstracts with Programs. Vol. 47, No. 4, p.55 Abstract

In this session we review the Upper Cretaceous marine amniote records from the west coasts of North America and Africa. Recent work by our group in Angola, on the west coast of Africa, has opened up new fossiliferous localities, producing well-preserved turtles, plesiosaurs, and mosasaurs, ranging in age from Late Turonian to Late Maastrichtian. These African localities were deposited in arid latitudes and highly productive upwelling zones along the passive margin of a growing South Atlantic Ocean. The fossil record of Cretaceous marine amniotes from the West Coast of North America is relatively meager when compared to the African record and the prolific fossil beds laid down in the epicontinental seas of the Western Interior Seaway and northern Europe. Nonetheless, these localities provide an important glimpse of a marine ecosystem that developed on the active margins of a deep ocean basin. Historically considered to be depauperate and endemic, the west coast fauna was characterized by unusual forms such as Plotosaurus, arguably one of the most derived mosasaurs; however, in recent years, additional taxa have been described, revealing species diversity and ecological partitioning within these communities and in some cases, faunal interchange with other regions. The large quantity of well-preserved fossils from the west coast of Africa is influenced in part by its paleogeographic position, deposited within highly productive areas of Hadley Cell controlled upwelling zones. By contrast, the North American west coast localities have been deposited in temperate and higher latitudes since the Late Cretaceous. Nonetheless, the North American and African faunas share some common characteristics in a possessing a mix of endemic and more cosmopolitan forms. Habitat partitioning reflected in tooth form and body size is comparable between the Angolan and the North American west coast, and there is remarkable convergence in taxa which appear to exploit certain like-niches.

Clemmensen, L. B., Milàn J., Adolfssen J. S., Estrup E. J., Frobøse N., Klein N., Mateus O., & Wings O. (2015).  The vertebrate-bearing Late Triassic Fleming Fjord Formation of central East Greenland revisited: stratigraphy, palaeoclimate and new palaeontological data. Geological Society, London, Special Publications. 434, AbstractWebsite

In Late Triassic (Norian–Rhaetian) times, the Jameson Land Basin lay at 40° N on the northern part of the supercontinent Pangaea. This position placed the basin in a transition zone between the relatively dry interior of the supercontinent and its more humid periphery. Sedimentation in the Jameson Land Basin took place in a lake–mudflat system and was controlled by orbitally forced variations in precipitation. Vertebrate fossils have consistently been found in these lake deposits (Fleming Fjord Formation), and include fishes, dinosaurs, amphibians, turtles, aetosaurs and pterosaurs. Furthermore, the fauna includes mammaliaform teeth and skeletal material. New vertebrate fossils were found during a joint vertebrate palaeontological and sedimentological expedition to Jameson Land in 2012. These new finds include phytosaurs, a second stem testudinatan specimen and new material of sauropodomorph dinosaurs, including osteologically immature individuals. Phytosaurs are a group of predators common in the Late Triassic, but previously unreported from Greenland. The finding includes well-preserved partial skeletons that show the occurrence of four individuals of three size classes. The new finds support a late Norian–early Rhaetian age for the Fleming Fjord Formation, and add new information on the palaeogeographical and palaeolatitudinal distribution of Late Triassic faunal provinces.

2014
Marzola, M., Mateus O., Russo J., & Milàn J. (2014).  Comparison of modern and fossil Crocodylomorpha eggs and contribution to the oophylogeny of Amniota. XII Annual Meeting of the European Association of Vertebrate Palaeontologists. , p. 192, Regione Piemonte: European Association of Vertebrate Palaeontologists. Museo Regionale di Scienze Naturalimarzola_et_al._2014_comparison_of_modern_and_fossil_crocodylomorpha_eggs_and_contribution_to_the_oophylogeny_of_amniota-_eavp_2014.pdf
Hendrickx, C., Araújo R., & Mateus O. (2014).  The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses. PeerJ PrePrints. 2, e380v2., 2014 AbstractWebsite

The skull-bone quadrate in nonavian theropods is very diverse morphologically alongside the disparity of the group as a whole. However this disparity has been underestimated for taxonomic purposes. In order to evaluate the phylogenetic potential and investigate the evolutionary transformations of the quadrate, we conducted a Catalano-Goloboff phylogenetic morphometric analysis as well as a cladistic analysis using 98 discrete quadrate related characters. The cladistic analysis provides a fully resolved tree mirroring to some degree the classification of nonavian theropods. The quadrate morphology by its own provides a wealth of data with strong phylogenetic signal and allows inference of major trends in the evolution of this bone. Important synapomorphies include: for Abelisauroidea, a lateral ramus extending to the ectocondyle; for Tetanurae, the absence of the lateral process; for Spinosauridae, a medial curvature of the ventral part of the pterygoid ramus occurring just above the mandibular articulation; for Avetheropoda, an anterior margin of the pterygoid flange formed by a roughly parabolic margin; and for Tyrannosauroidea, a semi-oval pterygoid flange shape in medial view. The Catalano-Goloboff phylogenetic morphometric analysis reveals two main morphotypes of the mandibular articulation of the quadrate linked to function. The first morphotype, characterized by an anteroposteriorly broad mandibular articulation with two ovoid/subcircular condyles roughly subequal in size, is found in Ceratosauria, Tyrannosauroidea and Oviraptorosauria. This morphotype allows a very weak displacement of the mandible laterally. The second morphotype is characterized by an elongate and anteroposteriorly narrow mandibular articulation and a long and parabolic/sigmoid ectocondyle. Present in Megalosauroidea, Carcharodontosauridae and Dromaeosauridae, this morphotype permits the lower jaw rami to be displaced laterally when the mouth opened.

Polcyn, M. J., Jacobs L. L., Strganac C., Mateus O., Myers T. S., May S., Araújo R., Schulp A. S., & Morais M. L. (2014).  Geological and paleoecological setting of a marine vertebrate bonebed from the Lower Maastrichtian at Bentiaba, Angola. Secondary Adaptation of Tetrapods to Aquatic Life. , 2-4 Jun 2014, Washington DC, USA
Mateus, O. (2014).  Comparison of modern and fossil Crocodylomorpha eggs and contribution to the oophylogeny of Amniota. Annual Meeting of the European Association of Vertebrate Palaeontologists. XII Annual Meeting of the European Association of Vertebrate Palaeontologists, 192., 1 Abstract
n/a
Mateus, O. (2014).  Cracking dinosaur endothermy: paleophysiology unscrambled. NA, , 1 Abstract

The amniote eggshell functions as a respiratory structure adapted for the optimal transmission of respiratory gasses to and from the embryo according to its physiological requirements. Therefore amniotes with higher oxygen requirements, such as those that sustain higher metabolic rates, can be expected to have eggshells that can maintain a greater gas flux to and from the egg. Studies of extant amniotes have found that eggshells of reduced porosity impose a limit on the metabolic rate of the offspring. Here we show a highly significant relationship between metabolic rates and eggshell porosity in extant amniotes that predicts highly endothermic metabolic rates in dinosaurs. This study finds the eggshell porosity of extant endotherms to be significantly higher than that of extant ectotherms. Eggshell porosity values of dinosaurs are found to be significantly higherthan that of extant ectotherms, but not extant endotherms. Dinosaur eggshells are commonly preserved in the fossil record, and porosity may be readily identified and measured. This provides a simple tool to identify metabolic rates in extinct egg-laying tetrapods whose eggs possessed a mineralized shell

Mateus, O. (2014).  Degradation processes and consolidation of Late Jurassic sandstone dinosaur tracks in museum environment (Museum of Lourinhã, Portugal). Geophysical Research Abstracts. Geophysical Research Abstracts, EGU2014–9026–1, 2014., 1 Abstract
n/a
Mateus, O. (2014).  Elephas and other vertebrate fossils near Taghrout, Morocco. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 178., 1 Abstract
n/a
Mateus, O. (2014).  Geological and paleoecological setting of a marine vertebrate bonebed from the Lower Maastrichtian at Bentiaba, Angola. Proceedings of the Secondary Adaptation of Tetrapods to Aquatic Life. NA., 1 Abstract

A single, geographically and temporally restricted horizon at Bentiaba, Angola (14.3° S), preserves a concentration of skeletons and isolated elements representing sharks, rays, bony fish, at least three species of turtles, two species of plesiosaurs, at least five species of mosasaurs, and rare volant and terrestrial forms. The concentration, referred to as the Bench 19 Fauna, formed on a narrow continental shelf at paleolatitude 24°S as predicted by paleomagnetic data and confirmed by plate motion models. The shelf evolved as a transform passive margin along faults associated with the opening of the South Atlantic. Latitude 24°S falls today along the coast of northern Namibia, an area of intense upwelling and hyperarid coastal desert. The Namibe Basin in southern Angola is separated from the Walvis Basin of Namibia by the Walvis Ridge, and the continental shelf in northern Namibia is eight times the width of that at Bentiaba. However, the sediment entombing the fossils at Bentiaba is an immature feldspathic sand, shown by detrital zircon ages to be derived from nearby exposed granitic shield rocks, suggesting similar climatic and drainage conditions between the two regions. Temporal control of the Bentiaba section is provided by magnetostratigraphy and stable carbon isotope chemostratigraphy anchored by an Ar40/Ar39radiometric date on basalt. The age of Bench 19 is constrained to chron C32n.1n and thus falls between 71.4 and 71.64 Ma. Massive bedding without hummocky cross-bedding or other sedimentary structures indicates deposition in shallow water below wave base. δ18O analysis of bivalve shells indicates a water temperature of 18° C immediately below Bench 19. Nearest neighbor distance peaks at 5 m (n=19

Mateus, O. (2014).  Preliminary Magnetostratigraphy for the Jurassic–Cretaceous Transition in Porto da Calada, Portugal. (Rogério Rocha, João Pais, Kullberg, {José Carlos}, Stanley Finney, Ed.).STRATI 2013:First International Congress on Stratigraphy At the Cutting Edge of Stratigraphy. 873–877., 1: Springer International Publishing Switzerland Abstract

We present a stratigraphic log supporting a preliminary magnetostratigraphy of a Tithonian–Berriasian section in Porto da Calada (Portugal). Based on biostratigraphy and reversed and normal magnetostratigraphy, the location of the Tithonian–Berriasian boundary is tentatively located at ca. 52 m, not in disagreement with former proposals. Due to the occurrence of later remagnetization (diagenesis), the magnetostratigraphic definition of the Tithonian–Berriasian section at the Cabo Espichel (Portugal) location was not able to be established

Hendrickx, C., & Mateus O. (2014).  Torvosaurus gurneyi n. sp., the largest terrestrial predator from Europe, and a proposed terminology of the maxilla anatomy in nonavian theropods. PLoS ONE. 9, e88905., 03, Number 3: Public Library of Science Abstracthendrickx_mateus_2014_torvosaurus_portugal.pdfWebsite

The Lourinhã Formation (Kimmeridgian-Tithonian) of Central West Portugal is well known for its diversified dinosaur fauna similar to that of the Morrison Formation of North America; both areas share dinosaur taxa including the top predator Torvosaurus, reported in Portugal. The material assigned to the Portuguese T. tanneri, consisting of a right maxilla and an incomplete caudal centrum, was briefly described in the literature and a thorough description of these bones is here given for the first time. A comparison with material referred to Torvosaurus tanneri allows us to highlight some important differences justifying the creation of a distinct Eastern species. Torvosaurus gurneyi n. sp. displays two autapomorphies among Megalosauroidea, a maxilla possessing fewer than eleven teeth and an interdental wall nearly coincidental with the lateral wall of the maxillary body. In addition, it differs from T. tanneri by a reduced number of maxillary teeth, the absence of interdental plates terminating ventrally by broad V-shaped points and falling short relative to the lateral maxillary wall, and the absence of a protuberant ridge on the anterior part of the medial shelf, posterior to the anteromedial process. T. gurneyi is the largest theropod from the Lourinhã Formation of Portugal and the largest land predator discovered in Europe hitherto. This taxon supports the mechanism of vicariance that occurred in the Iberian Meseta during the Late Jurassic when the proto-Atlantic was already well formed. A fragment of maxilla from the Lourinhã Formation referred to Torvosaurus sp. is ascribed to this new species, and several other bones, including a femur, a tibia and embryonic material all from the Kimmeridgian-Tithonian of Portugal, are tentatively assigned to T. gurneyi. A standard terminology and notation of the theropod maxilla is also proposed and a record of the Torvosaurus material from Portugal is given.

Hendrickx, C., & Mateus O. (2014).  Abelisauridae (Dinosauria: Theropoda) from the Late Jurassic of Portugal and dentition-based phylogeny as a contribution for the identification of isolated theropod teeth. Zootaxa. 3759, 1-74. Abstracthendrickx__mateus_2014._abelisauridae_dinosauria_theropoda_from_the_late_jurassic_of_portugal.pdf

Theropod dinosaurs form a highly diversified clade, and their teeth are some of the most common components of the Mesozoic dinosaur fossil record. This is the case in the Lourinhã Formation (Late Jurassic, Kimmeridgian-Tithonian) of Portugal, where theropod teeth are particularly abundant and diverse. Four isolated theropod teeth are here described and identified based on morphometric and anatomical data. They are included in a cladistic analysis performed on a data matrix of 141 dentition-based characters coded in 60 taxa, as well as a supermatrix combining our dataset with six recent datamatrices based on the whole theropod skeleton. The consensus tree resulting from the dentition-based data matrix reveals that theropod teeth provide reliable data for identification at approximately family level. Therefore, phylogenetic methods will help identifying theropod teeth with more confidence in the future. Although dental characters do not reliably indicate relationships among higher clades of theropods, they demonstrate interesting patterns of homoplasy suggesting dietary convergence in (1) alvarezsauroids, therizinosaurs and troodontids; (2) coelophysoids and spinosaurids; (3) compsognathids and dromaeosaurids; and (4) ceratosaurids, allosauroids and megalosaurids.

Based on morphometric and cladistic analyses, the biggest tooth from Lourinhã is referred to a mesial crown of the megalosaurid Torvosaurus tanneri, due to the elliptical cross section of the crown base, the large size and elongation of the crown, medially positioned mesial and distal carinae, and the coarse denticles. The smallest tooth is identified as Richardoestesia, and as a close relative of R. gilmorei based on the weak constriction between crown and root, the “eight-shaped” outline of the base crown and, on the distal carina, the average of ten symmetrically rounded denticles per mm, as well as a subequal number of denticles basally and at mid-crown. Finally, the two medium-sized teeth belong to the same taxon and exhibit pronounced interdenticular sulci between distal denticles, hooked distal denticles for one of them, an irregular enamel texture, and a straight distal margin, a combination of features only observed in abelisaurids. They provide the first record of Abelisauridae in the Jurassic of Laurasia and one of the oldest records of this clade in the world, suggesting a possible radiation of Abelisauridae in Europe well before the Upper Cretaceous.

Strganac, C., Salminen J., Jacobs L. L., Ferguson K. M., Polcyn M. J., Mateus O., Schulp A. S., Morais M. L., Tavares T. S., & Gonçalves A. O. (2014).  Carbon isotope stratigraphy and 40Ar/39Ar age of the Cretaceous South Atlantic coast, Namibe Basin, Angola. Journal of African Earth Sciences. onine, 1-11. Abstractstrganac_et_al_2014_carbon_isotope_stratigraphy_magnetostratigraphy_and_40ar_39ar_age_of.pdfWebsite

We present the δ13C and paleomagnetic stratigraphy for marine strata at the coast of southern Angola, anchored by an intercalated basalt with a whole rock 40Ar/39Ar radiometric age of 84.6 ± 1.5 Ma, being consistent with both invertebrate and vertebrate biostratigraphy. This is the first African stable carbon isotope record correlated to significant events in the global carbon cycle spanning the Late Cenomanian to Early Maastrichtian. A positive ∼ 3‰ excursion seen in bivalve shells below the basalt indicates the Cenomanian-Turonian Boundary Event at 93.9 Ma, during Oceanic Anoxic Event 2. Additional excursions above the basalt are correlated to patterns globally, including a negative ∼ 3‰ excursion near the top of the section interpreted as part of the Campanian-Maastrichtian Boundary Events. The age of the basalt ties the studied Bentiaba section to a pulse of Late Cretaceous magmatic activity around the South Atlantic and significant tectonic activity, including rotation, of the African continent.

Jacobs, L., Polcyn M., Mateus O., Scott M., Graf J., Kappelman J., Jacobs B., Schulp A., Morais M., & Goncalves O. (2014).  Cenozoic vertebrates of coastal Angola. Journal of Vertebrate Paleontology, Program and Abstracts, 2014. 153.jacobs_et_al._2014_cenozoic_vertebrates_of_coastal_angola.pdf
Stockdale, M., Benton M., & Mateus O. (2014).  Cracking dinosaur endothermy: paleophysiology unscrambled. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 235-236.stockdale_et_al_2014_eggshells_abstract_svp.pdf
Russo, J., Mateus O., Balbino A., & Marzola M. (2014).  Crocodylomorph eggs and eggshells from the Lourinhã Fm. (Upper Jurassic), Portugal. Comunicações Geológicas. 101, Especial I, 563-566. Abstractrusso_et_al_2014_crocodylomorph_eggs_and_eggshells_from_the_lourinha_fm_upper_jurassic_portugal.pdf

We here present fossil Crocodylomorpha eggshells from the Upper Jurassic Lourinhã Formation of Portugal, recovered from five sites: one nest from Cambelas with 13 eggs, and three partial eggs and various fragments from, Paimogo N (I), Paimogo S (II), Casal da Rola, and Peralta. All specimens but the nest were found in association with dinosaur egg material. Our research reveals that on a micro- and ultrastructural analysis, all samples present the typical characters consistent with crocodiloid eggshell morphotype, such as the shell unit shape, the organization of the eggshell layers, and the triangular blocky extinction observed with crossed nicols. We assign the material from the Lourinhã Formation to the oofamily Krokolithidae, making it the oldest crocodylomorph eggs known so far, as well as the best record for eggs of non- crocodylian crocodylomorphs. Furthermore, our study indicates that the basic structure of crocodiloid eggshells has remained stable since at least the Upper Jurassic.

Leal, A. S., Mateus O., Tomás C., & Dionísio A. (2014).  Decay and conservation trial of Late Jurassic sandstone with dinosaur tracks in a museum environment (Museum of Lourinhã, Portugal). Buletini i Shkencave Gjeologjike. 1(2014), 410. Abstractleal_et_al_2014_cbgassav1-_abstract_dinosaur_footprints__page_410.pdf

Abstract
Late Jurassic dinosaur footprints were found on a coastline cliff in Lourinhã, Porto das Barcas, Lagido do Forno (coordinate 39°14.178’N, 9°20.397’W, Portugal) in June 2001. The locality is characterized by steep cliffs with high slopes that are composed of gray and red sandstones/ siltstones. The location belongs to the successions of Lusitanian Basin representing the Porto Novo Member of the Lourinhã Formation. Three natural infills of tridactyl tracks, possibly ascribed to ornithopod, a bipedal herbivore were found, representing a left foot movement, a right and a left one, respectively. Footprints are 300- 400mm wide and have a height of 330-360mm. The footprints are characterized by round fingers, which are elongated due to some degradation/ erosion. The footprints were collected from the field in 2001 and subsequently cleaned, consolidated and glued in the laboratory of the Museum of Lourinhã before being exhibited in a museum display. Stone matrix was removed and a consolidation product was applied, probably a polyvinyl acetate. The footprint with broken central digit was glued with an epoxy resin, Araldite. Both applied products were confirmed by analysis of μ- FTIR and both presented colour change and detachment surface problems. The footprints have been exposed in the palaeontology hall of the Museum of Lourinhã, Portugal from 2004 without climate controlling. These trace fossils form an important part of the palaeontological collection of Late Jurassic vertebrate fossils from Lourinhã Formation. Presently, it is considered a unique heritage in danger of disappearing due to high decay level of disaggregation of its geological structure. The footprints display several pathologies, such as “Blistering”, “Powdering”, “Exfoliation”’ as well as “Dirt”, “Fracture”’, “Inscriptions”, “Consolidants” and “Adhesives” and are now in very poor conditions. Laboratorial analysed were made to evaluate the presence of salts. Moreover a microclimatic study was conducted inside the museum to evaluate the influence of thermo-hygrometric parameters on the decay processes. The future interventions will depend on the results of consolidation trials that are currently under progress by using stone samples taken from the same layer and location from Porto das Barcas applying different commercial consolidation products.

Leal, S., Mateus O., Tomás C., & Dionisio A. (2014).  Degradation processes and consolidation of Late Jurassic sandstone dinosaur tracks in museum environment (Museum of Lourinhã, Portugal). EGU General Assembly 2014 - Geophysical Research Abstracts. Vol. 16, EGU2014-9026-1, 2014.leal_et_al_2014_tracks_lab_egu2014-9026-1.pdf
Hendrickx, C., Mateus O., & Araújo R. (2014).  The dentition of megalosaurid theropods, with a proposed terminology on theropod teeth. XII EAVP Meeting XII Annual Meeting of the European Association of Vertebrate Palaeontologists – Abstract Book. p. 75., Torino 24-28 June 2014hendrickx_et_al_2014_megalosaurid_teeth_eavp.pdf
Mateus, O., & Marzola M. (2014).  Dinosaur taphonomy in the Lourinhã Formation (Late Jurassic, Portugal). 7th International Meeting on Taphonomy and Fossilization, Taphos 2014. 60-61., Ferrara, Italymateus__marzola_2014_lourinha_taphonomy_ferrara_taphonomy_meeting_2014.pdf
Marzola, M., Mateus O., Schulp A., Jacobs L., Polcyn M., & Pervov V. (2014).  Early Cretaceous tracks of a large mammaliamorph, a crocodylomorph, and dinosaurs from an Angolan diamond mine. Journal of Vertebrate Paleontology, Program and Abstracts, 2014. 181.marzola_et_al_2014._cretaceous_tracks_mammaliamorph_a_crocodilomorph_angolan_diamond_mine.pdf
Russo, J., Mateus O., Marzola M., & Balbino A. (2014).  Eggs and eggshells of crocodylomorpha from the Late Jurassic of Portugal. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 218.russo_et_al_2014eggs_crocodylomorpha_portugal.pdf
Marinheiro, J., Mateus O., Alaoui A., Amani F., Nami M., & Ribeiro C. (2014).  Elephas and other vertebrate fossils near Taghrout, Morocco. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 178.marinheiro_et_al._2014_elephas_and_other_vertebrate_fossils_near_taghrout.pdf
Mateus, O., Butler R. J., Brusatte S. L., Whiteside J. H., & Steyer S. J. (2014).  The first phytosaur (Diapsida, Archosauriformes) from the Late Triassic of the Iberian Peninsula. Journal of Vertebrate Paleontology. 34(4), 970-975.mateus_et_al_2014_first_phytosaur_algarve_portugal_jvp.pdfWebsite
Mallison, H., Schwarz-Wings D., Tsai H., Holliday C., & Mateus O. (2014).  Fossil longbone cartilage preserved in stegosaurs?. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 176.mallison_et_al._2014_fossil_longbone_cartilage_preserved_in_stegosaurs.pdf
Polcyn, M., Jacobs L., Strganac C., Mateus O., Myers S., May S., Araujo R., Schulp A., & Morais M. (2014).  Geology and paleoecology of a marine vertebrate bonebed from the lower Maastrichtian of Angola. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 206.polcyn_et_al._2014_geology_and_paleoecology_of_a_marine_vertebrate_bonebed_from_the_lower_maastrichtian_of_angola.pdf