Asia
Xing, L., Lockley M. G., Marty D., Zhang J., Wang Y., Klein H., McCrea R. T., Buckley L. G., Belvedere M., Mateus O., Gierliński G. D., Piñuela L., Persons, IV S. W., Wang F., Ran H., Dai H., & Xie X.
(2015).
An Ornithopod-Dominated Tracksite from the Lower Cretaceous Jiaguan Formation (Barremian–Albian) of Qijiang, South-Central China: New Discoveries, Ichnotaxonomy, Preservation and Palaeoecology.
PLoS ONE. 10, e0141059., 10, Number 10: Public Library of Science
AbstractThe historically-famous Lotus Fortress site, a deep 1.5–3.0-meter-high, 200-meter-long horizonal notch high up in near-vertical sandstone cliffs comprising the Cretaceous Jiaguan Formation, has been known since the 13th Century as an impregnable defensive position. The site is also extraordinary for having multiple tetrapod track-bearing levels, of which the lower two form the floor of part of the notch, and yield very well preserved asseamblages of ornithopod, bird (avian theropod) and pterosaur tracks. Trackway counts indicate that ornithopods dominate (69%) accounting for at least 165 trackmakers, followed by bird (18%), sauropod (10%), and pterosaur (3%). Previous studies designated Lotus Fortress as the type locality of Caririchnium lotus and Wupus agilis both of which are recognized here as valid ichnotaxa. On the basis of multiple parallel trackways both are interpreted as representing the trackways of gregarious species. C. lotus is redescribed here in detail and interpreted to indicate two age cohorts representing subadults that were sometimes bipedal and larger quadrupedal adults. Two other previously described dinosaurian ichnospecies, are here reinterpreted as underprints and considered nomina dubia. Like a growing number of significant tetrapod tracksites in China the Lotus Fortress site reveals new information about the composition of tetrapod faunas from formations in which the skeletal record is sparse. In particular, the site shows the relatively high abundance of Caririchium in a region where saurischian ichnofaunas are often dominant. It is also the only site known to have yielded Wupus agilis. In combination with information from other tracksites from the Jiaguan formation and other Cretaceous formations in the region, the track record is proving increasingly impotant as a major source of information on the vertebrate faunas of the region. The Lotus Fortress site has been developed as a spectacular, geologically-, paleontologically- and a culturally-significant destination within Qijiang National Geological Park.
Eberth, D. A., Kobayashi Y., Lee Y. N., Mateus O., Therrien F., Zelenitsky D. K., & Norell M. A.
(2009).
Assignment of Yamaceratops dorngobiensis and Associated Redbeds at Shine Us Khudag (Eastern Gobi, Dorngobi Province, Mongolia) to the Redescribed Javkhlant Formation (Upper Cretaceous).
Journal of Vertebrate Paleontology. 29, 295-302., Jan: Univ Nova Lisboa, Hokkaido Univ, Museu Lourinha, Amer Museum Nat Hist, Korean Inst Geosci & Mineral Resources, Royal Tyrell Museum, Royal Tyrell Museum, Univ Calgary
Abstract
Allain, R., Taquet P., Battail B., Dejax J., Richir P., Veran M., Limon-Duparcmeur F., Vacant R., Mateus O., Sayarath P., Khenthavong B., & Phouyavong S.
(1999).
Un nouveau genre de dinosaure sauropode de la formation des Gres superieurs (Aptien-Albien) du Laos.
Comptes Rendus de l'Academie des Sciences - Series IIA - Earth and Planetary Science. 329, 609-616., oct, Number 8
AbstractThe partly-articulated postcranial remains of two sauropod skeletons recently found in Tang Vay (Savannakhet Province, Laos) are assigned to the species Tangvayosaurus hoffeti (nov. gen., nov. sp.). The derived characters present in the new material confirm the presence of titanosaurs in South East Asia at the end of the Early Cretaceous, but are not consistent with its placement within Titanosaurus genus as first done by Hoffet in 1942. All of the material relative to this species is therefore referred to a new genus: Tangvayosaurus. Tangvayosaurus and the Thai genus Phuwiangosaurus have strong affinities and are considered as primitive titanosaurs.