Publications

Export 699 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Mateus, O., Marzola M., Schulp A. S., Jacobs L. L., Polcyn M. J., Pervov V., Gonçalves A. O. {\'ı}mpio, & Morais M. L. (2017).  Angolan ichnosite in a diamond mine shows the presence of a large terrestrial mammaliamorph, a crocodylomorph, and sauropod dinosaurs in the Early Cretaceous of Africa. Palaeogeography, Palaeoclimatology, Palaeoecology. 471, 220–232., apr: Elsevier {BV} AbstractWebsite
n/a
Mateus, O. (2007).  Notes and review of the ornithischian dinosaurs of Portugal. Journal of Vertebrate Paleontology. 27(suppl. to 3), 114. Abstract
n/a
Mateus, O., Walen A., & Antunes M. T. (2006).  The large theropod fauna of the Lourinhã Formation (Portugal) and its similarity to the Morrison Formation, with a description of a new species of Allosaurus. New Mexico Museum of Natural History and Science Bulletin. 36, 123-129. Abstractmateus_walen_antunes_-_2006_-_the_large_theropod_fauna_of_the_lourinha_formation__portugal__and_its_similarity_to_the_morrison_formation__with_a_description_of_a_new_species_of_allosaurus.pdf

Late Jurassic theropod dinosaurs have been known in Portugal since 1863 but only now are they being fully understood, with the recognition of genera such as Allosaurus, Aviatyrannis, Ceratosaurus, Lourinhanosaurus, and Torvosaurus from the Lourinhã and Alcobaça Formations (Kimmeridgian/Tithonian). Ceratosaurus dentisulcatus can now be reported from Portugal. It represents the only occurrence of this species outside the Morrison Formation.
New cranial elements confirm the presence of Torvosaurus tanneri, in Portugal. Torvosaurus was the largest Late Jurassic land carnivore. New postcranial and cranial elements allow the erection of a new species from Portugal, Allosaurus europaeus n.sp. The theropod assemblage of Portugal is similar to that of the Morrison Formation.

Mateus, O., Callapez P. M., & Puértolas-Pascual E. (2017).  The oldest Crocodylia? a new eusuchian from the Late Cretaceous (Cenomanian) of Portugal. Journal of Vertebrate Paleontology, Program and Abstracts. 2017, 160. Abstractmateus_et_al_2017_oldest_crocodylia_svp_2017_abstract.pdf

n/a

Mateus, O. (2011).  Evolutionary major trends of ornithopod dinosaurs teeth. (Unknown Unknown, Ed.).Dinosaurios y paleontología desde América Latina. 25–31., 1: EDIUNC, Editorial de la Universidad Nacional de Cuyo Abstract
n/a
Mateus, O. (2010).  Physical drivers of evolution and the history of the marine tetrapod fauna of Angola. –, , 1 Abstract

Modern marine species populations are often evaluated in terms of bottom-up, resource limited structure, or top-down, predator controlled structure. In a larger timeframe, investiga- tion of physical drivers in marine tetrapod evolution relies on the recognition of patterns and the correlation in timing of physical events with biotic change. However, it has been dem- onstrated through the study of fossil cetaceans that a broader deep-time perspective within a top-down or bottom-up framework is informative. Here we examine the fossil record of &UHWDFHRXV PDULQH WHWUDSRGV LQ $QJROD WR GLVFHUQ SDWWHUQV WKDW PD\ UHÀHFW SK\VLFDO GULYHUV RI evolution, and that are also relevant to population structure. In modern marine ecosystems, GLVWULEXWLRQ SDWWHUQV UHÀHFWLQJ SULPDU\ SURGXFWLYLW\ DUH LQGLFDWLYH RI ERWWRP?XS FRQWURO? ,Q the fossil record, productivity-controlled distribution patterns can also be perceived. Physi- cal parameters resulting in environmental stability, sea-level change, oceanic anoxic events, paleoclimate, and paleogeography are examined in comparison with taxonomic diversity and life history patterns. Mosasaurs originated during a time of high global temperatures and shallow temperature gradients. As upper-trophic-level species of modest size and plesiopedal limb structure (capable of terrestrial locomotion), early mosasaurs were subject to both top- down and bottom up pressures. The attainment of larger size coupled with emigration and biogeographic distribution in areas of high primary productivity, and niche differentiation VKRZQ E\ 13C values, indicate bottom-up pressures. Productivity along the African coast since the formation of the Atlantic Ocean facilitated the co-occurrence of diverse marine tetrapods through time, and has culminated today in the Benguela large marine ecosystem. Just as the current Benguela ecosystem has tetrapod species populations dominated by both bottom-up (cetaceans) and top-down strategies (sea birds and pinnipeds), so too did the Cre- taceous community, with mosasaurs and plesiosaurs having predominantly bottom-up popu- lation structure, while sea turtles and pterosaurs were more subject to top-down pressures.

Mateus, O., & Antunes M. T. (2000).  On the presence of Ceratosaurus sp. (Dinosauria: Theropoda) in the Late Jurassic of Portugal. Abstract volume of the 31st International Geological Congress. , Rio de Janeiro, Brazil Abstract
n/a
Mateus, O., Dyke G., Motchurova-Dekova N., Ivanov P., & Kamenov G. D. (2010).  The first record of a dinosaur from Bulgaria. Lethaia. 43, 88-94., Jan Abstractmateus_et_al__2010_the_first_record_of_a_dinosaur_in_bulgaria._lethaia.pdfWebsite

A portion of a left humerus from the Upper Maastrichtian of Vratsa district (NW Bulgaria)
is shown to be from a non-avian theropod dinosaur: this is the first record of a
dinosaur from Bulgaria. We describe this bone, suggest that it most likely pertains to an
ornithomimosaur, and discuss the fossil record of other similar taxa of Late Cretaceous
age that have been reported from Europe. To investigate the taphonomy of this fossil,
rare earth element (REE) analysis is combined with strontium (Sr) isotope data to confirm
that this Bulgarian dinosaur bone was initially fossilized in a terrestrial environment,
then later re-worked into late Maastrichtian marine sediments.

Mateus, O., Maidment S. C. R., & Christiansen N. A. (2009).  A new long-necked {'}sauropod-mimic{'} stegosaur and the evolution of the plated dinosaurs. Proceedings of the Royal Society B: Biological Sciences. 276, 1815-1821., Number 1663 Abstract
n/a
Mateus, O. (1998).  Dinossauros Portugueses. Caderno de resumos do I Congresso de Estudantes de Biologia. 13–13., Évora Abstract
n/a
Mateus, I., Mateus H., Antunes M. T., Mateus O., Taquet P., Ribeiro V., & Manuppella G. (1998).  Upper Jurassic Theropod Dinosaur embryos from Lourinhã (Portugal). Mem. Acad. Ciências de Lisboa. 37, 101-109. Abstractmateus_et_al_1998_-_upper_jurassic_theropod_dinosaur_embryos_from_lourinha_portugal_-_upper_jurassic_palaeoenvironments_in_portugal_ed._....pdfWebsite

Upper Jurassic nesting site from Paimogo (Lourinhã, Portugal) yielded the oldest dinosaur theropod embryos ever found. Numerous bones, including skull bones, from the skeleton of these embryos have been collected. The study of bones and embryos offers the possibility to learn more on the early life of theropod dinosaurs.

Mateus, O., Maidment S. C. R., & Christiansen N. A. (2008).  A new specimen aff. Dacentrurus armatus (Dinosauria: Stegosauridae) from the Late Jurassic of Portugal. Livro de Resumos de Tercer Congreso Latinoamericano de Paleontología de Vertebrados. 157–157., Neuquén, Argentina Abstract
n/a
Mateus, O., & Antunes M. T. (2000).  Late Jurassic dinosaurs of Portugal.. Abstracts of the 1st Symposium of European Dinosaurs, p.18. , Dusseldorf, Germany. Abstractmateus__antunes_2000_late_jurassic_dinosaurs_of_portugal_dusseldorf_2000.pdf

n/a

Mateus, O., & Castanhinha R. (2008).  PaleoAngola- Predadores de um oceano primitivo. National Geographic Portugal. 8, 26-33., Number 91 Abstract
n/a
Mateus, O., Overbeeke M., & Rita F. (2008).  Dinosaur Frauds, Hoaxes and "Frankensteins": How to distinguish fake and genuine vertebrate fossils. Journal of Paleontological Techniques. 2, 1-5.. Abstractmateus_et_al_2008_dinosaur_frauds_hoaxes_and_frankensteins-_how_to_distinguish_fake_and_genuine_vertebrate_fossils._journal_of_paleontological_techniques.pdfWebsite

Dinosaurs and other fossils have been artificially enhanced, or totally forged, to increase their commercial value. The most problematic forgeries to detect are based on original fossils that are artificially assembled. Several techniques are suggested for detecting hoaxes: detailed visual examination, chemical analysis, Xray or CT-scan, and ultraviolet light. It is recommended that museums and paleontological researchers do not purchase and/or trade fossils lacking clear provenience information. Exceptions to that general rule should be closely examined using techniques described herein.

Mateus, O., and Dinis J., Cunha P. P., & and (2017).  The Lourinhã Formation: the Upper Jurassic to lower most Cretaceous of the Lusitanian Basin, Portugal – landscapes where dinosaurs walked. Ciências da Terra - Earth Sciences Journal. 19, 75–97., sep, Number 1: {NOVA}.{ID}.{FCT} AbstractWebsite
n/a
Mateus, O. (2005).  Dinossauros do Jurássico Superior de Portugal, com destaque para os saurísquios. Universidade Nova de Lisboa. , Lisboa
Mateus, O., Morais M. L., Schulp A. S., Jacobs L. L., & Polcyn M. J. (2006).  The Cretaceous of Angola. Journal of Vertebrate Paleontology. 26, 96–97., Number (Suppl. T Abstract
n/a
Mateus, O. (2009).  The Cretaceous Skeleton Coast of Angola. 29, , 1 Abstract
n/a
Mateus, O., & Jacinto J. J. (1998).  Activity Rithms and habitat of Hemidactylus turcicus (Reptilia, Gekkonidae) in Évora, Portugal. Boletin de ICIJA. 2, 37-43. Abstract
n/a
Mateus, O. (2009).  The sauropod Turiasaurus riodevensis in the the Late Jurassic of Portugal. Journal of Vertebrate Paleontology. 29, 144–144., Number 3 Abstract
n/a
Mateus, O. (1998).  Dinossauros de Portugal e um novo terópode do Jurássico Superior da Lourinhã. , Évora: Universidade de Évora Abstract
n/a
Mateus, O., & Antunes M. T. (2008).  Landmarks in the history of dinosaur paleontology in Portugal, focusing on skeletal remains. Abstract volume, Dinosaurs - A Historical Perspective, 6-7 may 2008. , London Abstract
n/a
Mateus, O. (2008).  Two ornithischian dinosaurs renamed: Microceratops Bohlin 1953 and Diceratops Lull 1905. Journal of Paleontology. 82, , Number 2 Abstract
n/a
Mateus, O. (2014).  Gigantic jurassic predators. (Agile Libre, Ed.).52 Things You Should Know About Palaeontology. 56–57.: Agile Libre Abstract
n/a
Mateus, O., & Antunes M. T. (2008).  Landmarks in the history of dinosaur paleontology in Portugal, focusing on skeletal remains. Abstract volume, Dinosaurs - A Historical Perspective, 6-7 may 2008. , London Abstract

Portugal has been providing dinosaur remains since, at least, 1863. The 18th century tiles depicting the legend of Our Lady in Cabo Espichel are probably the oldest known dinosaur track illustration. To our knowledge, the first remains found in Portugal were theropod teeth collected near Porto das Barcas (Late Jurassic of Lourinhã) in June 20th, 1863 by the geologist Carlos Ribeiro (1813-1882). The first dinosaur paper was written by Henri Sauvage (1842-1917) published in 1896. All remains collected since 19th century were gathered in a work signed by Albert de Lapparent (1905-1975) and Georges Zbyszewski (1909-1999 ) titled Les Dinosauriens du Portugal (1957) that was a significant milestone in the Portuguese dinosaur paleontology and gives the state-of-the-art by the time. Several dinosaurs are named, described, depicted and mapped in that monograph. The first track record is given by Jacinto Pedro Gomes (1844-1916) in 1916. Concerning the non-scientific literature referring to dinosaurs, in 1884 the newspaper Occidente reports the Bernissart findings in Belgium. In the 1959 occurs the first visit to Portugal of Walter Kühne (1911-1991) from the Free University of Berlin. Further visits and work granted the access to the Guimarota Mine and other Late Jurassic deposits in the 1960’s, 70’s and 80’s with a high number of publications. In the 1980’s and early 1990’s starts a progressive era for dinosaur paleontology in Portugal with the works of Peter Galton, Miguel Telles Antunes, the Natural History Museum, the Museum of Lourinhã and the New University of Lisbon, Oliver Rauhut, and others.

Mateus, O. (2013).  Cathetosaurus as a valid sauropod genus and comparisons with Camarasaurus. Journal of Vertebrate Paleontology. 173., 1 Abstract
n/a
Mateus, O., Carrano M. T., & Taquet P. (2012).  Osteology of the embryonic theropods from the Late Jurassic of Paimogo, Portugal. Journal of Vertebrate Paleontology, Program and Abstracts, 2012, p.137. ISSN 1937-2809. 137.mateus_et_al_2012_embryos_paimogo_portugal_svp_2012_abstract_book_meeting_abstracts.pdf.pdf
Mateus, O. (2017).  Que Dinossauros Existiram em Portugal?. : Poster 80x59 cm, as a supplement of newspaper “Correio da Manhã” of 16 September 2017poster_correio_da_manha.jpg
Mateus, O. (2010).  Colecções e museus de Geologia: missão e gestão. , 1: Ed. Universidade de Coimbra e Centro de Estudos de História e Filosofia da Ciência Abstract
n/a
Mateus, O., Antunes M. T., & Taquet P. (2001).  Dinosaur ontogeny : the case of Lourinhanosaurus (Late Jurassic, Portugal). J. Vertebr. Paleontol. 21, Abstract
n/a
Mateus, O. (2009).  Preparation techniques applied to a stegosaurian Dinosaur from Portugal. Journal of Paleontological Techniques. 5, 1–24., 1, Number NA Abstract
n/a
Mateus, O., Butler R. J., Brusatte S. L., Whiteside J. H., & Steyer S. J. (2014).  The first phytosaur (Diapsida, Archosauriformes) from the Late Triassic of the Iberian Peninsula. Journal of Vertebrate Paleontology. 34(4), 970-975.mateus_et_al_2014_first_phytosaur_algarve_portugal_jvp.pdfWebsite
Mateus, O. (1996).  Situação populacional de Hemidactylus turcicus em Évora-Portugal. Actas do IV Congresso Luso-Espanhol de Herpetologia. 45., Porto Abstract
n/a
Mateus, O., & Marzola M. (2014).  Dinosaur taphonomy in the Lourinhã Formation (Late Jurassic, Portugal). 7th International Meeting on Taphonomy and Fossilization, Taphos 2014. 60-61., Ferrara, Italymateus__marzola_2014_lourinha_taphonomy_ferrara_taphonomy_meeting_2014.pdf
Mateus, O., & Jacinto J. J. (2008).  Hemidactylus turcicus. (A Loureiro, N F de Almeida, M.A Carretero, O S Paulo, Ed.).Atlas dos Anfíbio e Répteis de Portugal. 134-135. Abstract
n/a
Mateus, O. (2014).  Comparison of modern and fossil Crocodylomorpha eggs and contribution to the oophylogeny of Amniota. Annual Meeting of the European Association of Vertebrate Palaeontologists. XII Annual Meeting of the European Association of Vertebrate Palaeontologists, 192., 1 Abstract
n/a
Mateus, O., & Jacinto J. J. (1998).  Activity Rithms and habitat of Hemidactylus turcicus (Reptilia, Gekkonidae) in Évora, Portugal. Cuadernos ICIJA. 2, 37-43. Abstractmateus__jacinto_1998__activity_rithms_and_habitat_of_hemidactylus_turcicus_reptilia_gekkonidae_in_evora_portugal.pdfWebsite

A survey of Hemidactylus turcicus (Reptilia, Gekkonidae) was carried out every 3 weeks from March to November of 1997, in nocturnal transects in the city of Évora, Portugal. In this country this species is strictly nocturnal with a mean daily activity peak at 2hOO A.M (UTC).A model that correlates Activity and Temperature of the air is given. H. turcicus prefers, as microhabitat, walls (78%) and doors (16%) of low used houses. The average height in which they were found is about 3 meters.

Mateus, O., Dyke G., Motchurova-Dekova N., Ivanov P., & Kamenov G. D. (2008).  The Bulgarian dinosaur: did it exist? European late Cretaceous ornithomimosaurs. 56th Symposium of Vertebrate Palaeontology and Comparative Anatomy. 47–47., Dublin Abstract
n/a
Mateus, O. (2014).  Dinosaur taphonomy in the Lourinhã Formation (Late Jurassic, Portugal). International Meeting on Taphonomy and Fossilization. 60–61. Abstract
n/a
Mateus, O., Maidment S. C. R., & Christiansen N. A. (2008).  A new specimen aff. Dacentrurus armatus (Dinosauria: Stegosauridae) from the Late Jurassic of Portugal. Livro de Resumos de Tercer Congreso Latinoamericano de Paleontologia de Vertebrados. 157., Neuquén, Argentina Abstractmateus_et_al_2008_a_new_specimen_aff._dacentrurus_armatus_dinosauria_stegosauridae_from_the_late_jurassic_of_portugal.pdf

n/a

Mateus, O. (2012).  Evidence for presence of clavicles and interclavicles in sauropod dinosaurs and its implications on the furcula-clavicle homology. Journal of Vertebrate Paleontology. 184–185., 1 Abstract

Clavicles and interclavicles are plesiomorphically present in Reptilia. However, several groups show reduction or even loss of these elements. Crocodylimorpha, e.g., lost the clavicles, whereas dinosaurs are generally interpreted to only preserve the clavicles, the theropod furcula representing an unique case of fused clavicles. In sauropods, reports of clavicles are relatively frequent in non-titanosauriforms. These elements are elongated, curved, and rather stout bones with a spatulate and a bifurcate end. However, they were always found as single bones, and differ from the relatively short and unbifurcated clavicles found articulated with the scapulae of basal sauropodomorphs. Elements from the Howe Quarry (Late Jurassic; Wyoming, USA) shed new light on these interpretations. Besides the elongated, curved bones (herein named morphotype A), also pairs of symmetric, L-shaped bones were recovered (morphotype B), associated with diplodocid dorsal and cervical vertebrae. Elements resembling morphotype B - articulated between the scapulae - have recently been reported from a diplodocid found near Tensleep, Wyoming. Taphonomic evidence, as well as the fact that they were preserved in symmetrical pairs, therefore implies that morphotype B represents the true sauropod clavicles. Contrary to earlier reports, morphotype A elements from the Howe Quarry, as well as of previously reported specimens show a symmetry plane following the long axis of the elements. It is thus possible that the morphotype A elements were single bones from the body midline. The only such element present in the pectoral girdle of tetrapods are the interclavicle and the furcula. Comparison with crocodilian and lacertiform interclavicles indicates that the bifurcate end of the sauropod elements might represent the reduced transverse processes of the anterior end, and the spatulate end would have covered the coracoids or sternal plates ventrally. The presence of both clavicles and interclavicles in the pectoral girdle stiffens the anterior trunk, and enhances considerably its stability. Such an enforcement might have been needed in diplodocids due to the strong lateral forces induced to the fore-limbs by the posteriorly placed center of mass (due to shorter fore- than hind-limbs), as well as lateral movements of the enormously elongated necks and tails. The absence of clavicles and interclavicles in titanosauriforms coincides with the development of wide-gauge locomotion style. The presence of interclavicles in sauropods supports the recently proposed homology of the furcula with the interclavicle, instead of representing fused clavicles. Interclavicles were thus not lost, but may have remained cartilaginous or have yet to be found in basal dinosauriforms.