Publications

Export 635 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Mateus, O. (2005).  Dinossauros do Jurássico Superior de Portugal, com destaque para os saurísquios. Universidade Nova de Lisboa. , Lisboa
Mateus, O., Pereira B., Rocha R., & Kullberg J. C. (2018).  Aspiring Geopark Oeste in Portugal: scientific highlights and importance. 8th International Conference on UNESCO Global Geoparks. , 8-14 Sept., Adamello Brenta Geopark, Trentinomateus_et_al_2018_geopark_oeste.pdf
Mateus, O., Butler R. J., Brusatte S. L., Whiteside J. H., & Steyer J. S. (2014).  The first phytosaur (Diapsida, Archosauriformes) from the Late Triassic of the Iberian Peninsula. Journal of Vertebrate Paleontology. 34, 970–975., Number 4 Abstract
n/a
Mateus, O., & The Gigantic dinosaur E. (2006).  The European Enigmatic Dinosaur Evolution (in Japanese). Abstract
n/a
Mateus, O., Butler R. J., Brusatte S. L., Whiteside J. H., & Steyer S. J. (2014).  The first phytosaur (Diapsida, Archosauriformes) from the Late Triassic of the Iberian Peninsula. Journal of Vertebrate Paleontology. 34(4), 970-975.mateus_et_al_2014_first_phytosaur_algarve_portugal_jvp.pdfWebsite
Mateus, O. (2014).  Dinosaur taphonomy in the Lourinhã Formation (Late Jurassic, Portugal). International Meeting on Taphonomy and Fossilization. 60–61. Abstract
n/a
Mateus, O. (2010).  Evolutionary major trends of ornithopod dinosaurs teeth.. (J Calvo, J Porfiri, Y, {D Dos Santos BGR}, Ed.).Dinosaurios y paleontología desde América Latina,. 25–31 pp.., 1: EDIUNC Abstract
n/a
Mateus, O., Laven T., & Knotschke N. (2004).  A dwarf between giants? A new late Jurassic sauropod from Germany. Journal of Vertebrate Paleontology. 23, 90A., Number suppl. to 3mateus_et_al_2004_a_dwarf_between_giants-_a_new_late_jurassic_sauropod_from_germany_svp.pdfWebsite
Mateus, O., & Marzola M. (2014).  Dinosaur taphonomy in the Lourinhã Formation (Late Jurassic, Portugal). 7th International Meeting on Taphonomy and Fossilization, Taphos 2014. 60-61., Ferrara, Italymateus__marzola_2014_lourinha_taphonomy_ferrara_taphonomy_meeting_2014.pdf
Mateus, O., & Milan J. (2008).  Ichnological evidence for giant ornithopod dinosaurs in the Upper Jurassic Lourinhã Formation, Portugal. Oryctos. 8, 47-52. Abstractmateus_and_milan_2008_ichnological_evidence_for_giant_ornithopod_big_ornithopod_track_from_u_j_lourinha_fm_portugal.pdfWebsite

The Upper Jurassic Lourinhã Formation (Lusitanian Basin, Portugal) contains a diverse dinosaur fauna comprising theropods, sauropods, stegosaurs, ankylosaurs and several genera of ornithopods. The sedimentology in the area favours preservation of tracksways, and tracks from most of the dinosaurs are also represented by skeletal remains. During fieldwork in the summer of 2003 a new, large, tridactyl track was found at the beach of Vale Frades, approximately 6 km north of Lourinhã (central west Portugal). The track was found together with a stegosaur track on a clay bed exposed within the intertidal zone. Due to the immediate danger of erosion, the track was collected and is now on display at Museu da Lourinhã. The track is 70 cm long and 69 cm wide, the toes are short and broad, with indications of short blunt claws, and there is a high angle of divarication between the outer digits. The shape and dimensions of the track identifies it as deriving from an ornithopod dinosaur with an estimated hip height around three metres. Although very large ornithopods are known from the Cretaceous, the largest known Jurassic ornithopod is Camptosaurus from North America, and the largest known from Portugal is the camptosaurid Draconyx loureiroi. Neither of these reached the body size suggested by the new track. So far the track described herein is the only evidence for a Jurassic ornithopod of that size.

Mateus, O., Jacobs L., Polcyn M., Schulp A. S., Vineyard D., Buta Neto A., & Telles Antunes M. (2009).  The oldest African eucryptodiran turtle from the Cretaceous of Angola. Acta Palaeontologica Polonica. 54, 581-588., Number 4 Abstract
n/a
Mateus, O. (1996).  Situação populacional de Hemidactylus turcicus em Évora-Portugal. Actas do IV Congresso Luso-Espanhol de Herpetologia. 45–45., Porto Abstract
n/a
Mateus, O., & Antunes M. T. (2008).  Landmarks in the history of dinosaur paleontology in Portugal, focusing on skeletal remains. Abstract volume, Dinosaurs - A Historical Perspective, 6-7 may 2008. , London Abstract

Portugal has been providing dinosaur remains since, at least, 1863. The 18th century tiles depicting the legend of Our Lady in Cabo Espichel are probably the oldest known dinosaur track illustration. To our knowledge, the first remains found in Portugal were theropod teeth collected near Porto das Barcas (Late Jurassic of Lourinhã) in June 20th, 1863 by the geologist Carlos Ribeiro (1813-1882). The first dinosaur paper was written by Henri Sauvage (1842-1917) published in 1896. All remains collected since 19th century were gathered in a work signed by Albert de Lapparent (1905-1975) and Georges Zbyszewski (1909-1999 ) titled Les Dinosauriens du Portugal (1957) that was a significant milestone in the Portuguese dinosaur paleontology and gives the state-of-the-art by the time. Several dinosaurs are named, described, depicted and mapped in that monograph. The first track record is given by Jacinto Pedro Gomes (1844-1916) in 1916. Concerning the non-scientific literature referring to dinosaurs, in 1884 the newspaper Occidente reports the Bernissart findings in Belgium. In the 1959 occurs the first visit to Portugal of Walter Kühne (1911-1991) from the Free University of Berlin. Further visits and work granted the access to the Guimarota Mine and other Late Jurassic deposits in the 1960’s, 70’s and 80’s with a high number of publications. In the 1980’s and early 1990’s starts a progressive era for dinosaur paleontology in Portugal with the works of Peter Galton, Miguel Telles Antunes, the Natural History Museum, the Museum of Lourinhã and the New University of Lisbon, Oliver Rauhut, and others.

Mateus, O., Carrano M. T., & Taquet P. (2012).  Osteology of the embryonic theropods from the Late Jurassic of Paimogo, Portugal. Journal of Vertebrate Paleontology, Program and Abstracts, 2012, p.137. ISSN 1937-2809. 137.mateus_et_al_2012_embryos_paimogo_portugal_svp_2012_abstract_book_meeting_abstracts.pdf.pdf
Mateus, O. (2008).   Fósseis de transição, elos perdidos, fósseis vivos e espécies estáveis . Evolução: História e Argumentos. 77-96., Lisboa Abstract
n/a
Mateus, O. (2013).  Decapod crustacean body and ichnofossils from the Mesozoic of Portugal. NA, , 1 Abstract

Book of abstracts of the 5th Symposium on Mesozoic and Decapod Crustaceans

Mateus, O. (2012).  Ontogenetical changes in the quadrate of basal tetanurans. Fundamental!. 101–104., 1 Abstract

Although nonavian theropod have received considerable interest in the last years, their ontogeny still remains poorly understood, especially the ontogenetical changes affecting their skull (Rauhutand Fechner, 2005). The quadrate, for instance, is preserved in several embryos and juvenile specimens belonging to many clades of theropods such as the Tyrannosauridae (Carr, 1999), Compsognathidae (Dal Sasso and Maganuco, 2011), Therizinosauroidea (Kúndrat et al., 2007), Oviraptoridae (Norell et al., 1994; Norell et al., 2001; Weishampel et al., 2008) and Troodontidae (Varrichio et al., 2002) but very little is usually said about the anatomy of this bone and no one has ever investigated ontogenetical variation in the nonavian theropod quadrate. The discovery of two quadrates belonging to embryos of the sinraptorid Lourinhanosaurus antunesi from Portugal and five isolated quadrates pertaining to juvenile, subadult and adult specimens of Spinosauridae from Morocco fills this gap and allows some ontogenetic information to be drawn for this bone in these two specific clades of Theropoda.

Mateus, O., Laven T., & Knotschke N. (2004).  A dwarf between giants?: A new late Jurassic sauropod from Germany. Journal of Vertebrate Paleontology. 23, 90–90., Number suppl. to Abstract
n/a
Mateus, O., Mannion P. D., & Upchurch P. (2014).  Zby atlanticus, a new turiasaurian sauropod (Dinosauria, Eusauropoda) from the Late Jurassic of Portugal. Journal of Vertebrate Paleontology. 34(3), 618-634. Abstractmateus_et_al_2014_zby_atlanticus.pdfWebsite

Here we describe a new partial sauropod skeleton from the late Kimmeridgian (Late Jurassic) of the Lourinhã Formation, central west Portugal. The closely associated specimen comprises a complete tooth (with root), a fragment of cervical neural arch, an anterior chevron, and an almost complete right pectoral girdle and forelimb. The new sauropod, Zby atlanticus, n. gen. et sp., can be diagnosed on the basis of four autapomorphies, including a prominent posteriorly projecting ridge on the humerus at the level of the deltopectoral crest. Nearly all anatomical features indicate that Zby is a non-neosauropod eusauropod. On the basis of several characters, including tooth morphology, extreme anteroposterior compression of the proximal end of the radius, and strong beveling of the lateral half of the distal end of the radius, Zby appears to be closely related to Turiasaurus riodevensis from approximately contemporaneous deposits in eastern Spain. However, these two genera can be distinguished from each other by a number of features pertaining to the forelimb. Whereas previously described Late Jurassic Portuguese sauropods show close relationships with taxa from the contemporaneous Morrison Formation of North America, it appears that turiasaurians were restricted to Europe. All adult sauropods recovered in the Late Jurassic of Portugal thus far are very large individuals: it is possible that the apparent absence of small- or medium-sized adult sauropods might be related to the occupation of lower-browsing niches by non-sauropods such as the long-necked stegosaur Miragaia longicollum.

Mateus, O. (2009).  Dinolourinhã – a integração dos jovens na paleontologia: o caso-estudo do Museu da Lourinhã.. Journal of Paleontological Techniques. 28–29., 1 Abstract
n/a
Mateus, O. (1999).  Monofilia dos dinossauros e Origem das Aves: Serão as aves dinossauros?. (Spea- Sociedade Portuguesa para o Estudo das Aves, P, P Catry, F Moreira, Ed.).Actas do II Congresso de Ornitologia. 184-185., Lisboa Abstract
n/a
Mateus, O., & Jacinto J. J. (1997).  Ritmos de Actividade e habitat de Hemidactylus turcicus (Reptilia: Gekkonidae) em Évora, Portugal. Cuadernos de INICE. 74-75, 207-214. Abstract
n/a
Mateus, O., Maidment S. C. R., & Christiansen N. A. (2008).  A new specimen aff. Dacentrurus armatus (Dinosauria: Stegosauridae) from the Late Jurassic of Portugal. Livro de Resumos de Tercer Congreso Latinoamericano de Paleontologia de Vertebrados. 157., Neuquén, Argentina Abstractmateus_et_al_2008_a_new_specimen_aff._dacentrurus_armatus_dinosauria_stegosauridae_from_the_late_jurassic_of_portugal.pdf

n/a

Mateus, O. (2016).  Late Jurassic of Morrison Formation and Portugal tetrapods compared: a model to explain faunal exchange and similarity. Annual Meeting of the Society of Vertebrate Paleontology. 185., Salt Late City: Journal of Vertebrate Paleontology, Program and Abstracts, 2016 Abstract

The precursor of the North Atlantic existed between the North American and Iberian blocks from the earliest Jurassic Hettangian and has been ever expanding since. By the Kimmeridgian and Tithonian, when much of the Morrison Fm rocks were deposited, the proto-Atlantic was more than 300 km wide at 27° paleolatitude between North America and Iberia. Macrovertebrate paleontology reveals a unique story to the isolation of Iberia and instead suggest a paleogeographic land connection between North American and Iberia. Torvosaurus, Allosaurus, Ceratosaurus, Stegosaurus, Supersaurus and others have a distribution restricted to Morrison Formation in North America and Lourinhã Formation in Portugal. A novel paleogeographic model is here suggested: (1) around the Middle–Late Jurassic transition there is a major palaeoceanographic and palaeoclimatic reorganization, coincidental to a major eustatic sea-level drop and uplift associated with the Callovian– Oxfordian Atlantic Regressive Event; (2) creating an ephemeral land bridge presenting a temporary opportunity for terrestrial gateways likely across the Flemish Cap and Galician Bank land masses, allowing large dinosaurian taxa to cross the northern proto-Atlantic in both directions; (3) finally, a Callovian–Oxfordian faunal exchange around the 163 Ma, through latest Kimmeridgian at 152 Ma (the age of equivalent genera in both Morrison and Portugal), is was an interval that allowed speciation, but retaining generic similarity of vertebrates. This model is consistent with the chronology and taxonomy required for speciation of the Iberian and American forms, exemplified by the coeval sister-taxa pairs Torvosaurus tanneri and T. gurneyi, Allosaurus fragilis and A. europaeus, or Supersaurus vivianae and S. lourinhanensis. While some of the smaller animals in the fauna show Morrison/Portugal affinities, most from Iberia have European or even Asian affinities. The larger-bodied fauna are more closely related to Morrison than to mainland Europe (except for dacentrurine stegosaurs). The body size differences and affinities of taxa across paleogeography is comparable to what is observed today across the Wallace Line. Migration may have also occurred in both directions. The closest relative of Torvosaurus is likely the European Bathonian Megalosaurus, thus the presence of the genus in North America represents a European migration. On other hand, Allosaurus and Supersaurus origins are consistent with a North American origin, representing an westto-east migration.

Mateus, O., Jacobs L. L., Polcyn M. J., Schulp A. S., Neto A. B., & Antunes M. T. (2008).  Dinosaur and turtles from the Turonian of Iembe, Angola. Livro de Resumos de Tercer Congreso Latinoamericano de Paleontología de Vertebrados. 156., Neuquén, Argentina Abstract
n/a
Mateus, O., Callapez P. M., Polcyn M. J., Schulp A. S., Gonçalves A. O., & Jacobs L. L. (2019).  The Fossil Record of Biodiversity in Angola Through Time: A Paleontological Perspective. (Huntley, Brian J., Russo, Vladimir, Lages, Fernanda, Ferrand, Nuno, Ed.).Biodiversity of Angola: Science & Conservation: A Modern Synthesis. 53–76.: Springer International Publishing Abstractmateus2019_chapter_thefossilrecordofbiodiversityi.pdf

This chapter provides an overview of the alpha paleobiodiversity of Angola based on the available fossil record that is limited to the sedimentary rocks, ranging in age from Precambrian to the present. The geological period with the highest paleobiodiversity in the Angolan fossil record is the Cretaceous, with more than 80{%} of the total known fossil taxa, especially marine molluscs, including ammonites as a majority among them. The vertebrates represent about 15{%} of the known fauna and about one tenth of them are species firstly described based on specimens from Angola.

Mateus, O., & Milan J. (2005).  Ichnological evidence for giant ornithopod dinosaurs in the Late Jurassic Lourinhã Formation, Portugal. Abstract Book of the International Symposium on Dinosaurs and Other Vertebrates Palaeoichnology. 60–60., Fumanya, Barcelona Abstract
n/a
Mateus, O., Jacobs L., Polcyn M., Schulp A. S., Vineyard D., Neto A. B., & Antunes M. T. (2009).  The oldest African eucryptodiran turtle from the Cretaceous of Angola. Acta Palaeontologica Polonica. 54, 581-588., Jan: Univ Agostinho Neto, Univ Nova Lisboa, Museu Lourinha, Acad Ciencias Lisboa, Nat Hist Museum Maastricht, So Methodist Univ Abstractmateus_et_al_2009_the_oldest_african_angolachelys_angola_turtle.pdfWebsite

A new Late Cretaceous turtle, Angolachelys mbaxi gen. et sp. nov., from the Turonian (90 Mya) of Angola, represents the oldest eucryptodire from Africa. Phylogenetic analysis recovers Angolachelys mbaxi as the sister taxon of Sandownia harrisi from the Aptian of Isle of Wight, England. An unnamed turtle from the Albian Glen Rose Formation of Texas (USA) and the Kimmeridgian turtle Solnhofia parsonsi (Germany), are successively more distant sister taxa. Bootstrap analysis suggests those four taxa together form a previously unrecognized monophyletic clade of marine turtles, herein named Angolachelonia clade nov., supported by the following synapomorphies: mandibular articulation of quadrate aligned with or posterior to the occiput, and basisphenoid not visible or visibility greatly reduced in ventral view. Basal eucryptodires and angolachelonians originated in the northern hemisphere, thus Angolachelys represents one of the first marine amniote lineages to have invaded the South Atlantic after separation of Africa and South America.

Mateus, O., Jacobs L. L., Schulp A. S., Polcyn M. J., Tavares T. S., Neto A. B., Morais M. L. {\'ı}sa, & Antunes M. T. (2011).  Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola. Anais da Academia Brasileira de Ciências. 83, 221–233., Number 1: {FapUNIFESP} ({SciELO}) AbstractWebsite
n/a
Mateus, I., Mateus H., Antunes M. T., Mateus O., Taquet P., Ribeiro V., & Manuppella G. (1997).  Couvée, oeufs et embryons d'un dinosaure théropode du Jurassique supérieur de Lourinhã (Portugal). C.R Acad. Sci. Paris, Sciences de la terre et des planetes. 325, 71-78., Jully, Number 1 Abstractmateus_et_al_1997_eggs_embryos_nest__couvee_oeufs_et_embryons_dun_dinosaure_theropode_du_jurassique_superieur_de_lourinha_portugal.pdfWebsite

Several well preserved clutches of dinosaurs have been discovered in the upper Kimmeridgian/ Tithonian of Lourinhã (Estramadur Province, Portugal). Some eggs of one clutch contained embryo elements of a theropod dinosaur. The egg-shell resembles that of eggs which have been discovered in the Upper Jurassic of Colorado

Mateus, O., Callapez P. M., & Puértolas-Pascual E. (2017).  The oldest Crocodylia? a new eusuchian from the Late Cretaceous (Cenomanian) of Portugal. Journal of Vertebrate Paleontology, Program and Abstracts. 2017, 160. Abstract
n/a
Mateus, I., Mateus H., Antunes M. T., Mateus O., Taquet P., Ribeiro V., & Manuppella G. (1997).  Couvée, øe}ufs et embryons d{\textquotesingle}un Dinosaure Théropode du Jurassique supérieur de Lourinha (Portugal). Comptes Rendus de l{\textquotesingle}Académie des Sciences - Series {IIA} - Earth and Planetary Science. 325, 71–78., jul, Number 1: Elsevier {BV} AbstractWebsite
n/a
Mateus, O. (2008).  Checklist for Late Jurassic reptiles and amphibians from Portugal. Livro de Resumos do X Congresso Luso-Espanhol de Herpetologia. 55., Coimbra Abstractmateus_2008_lista_de_repteis_e_anfibios_do_jurassico_superior_de_portugal__list_congressoherpetolog.pdf

The richness of Late Jurassic vertebrates in Portugal is known since the 19th century by Paul Choffat, Henri Sauvage and other. The Kimmeridgian Guimarota fauna assemblage is the best known, followed by the fauna of Lourinhã formation. Here is presented an attempt to provide a checklist of the reptiles and amphibians of the Late Jurassic. Amphibia: Lissamphibia (Celtedens, cf. Marmorerpeton, Discoglossidae indet.). Chelonia: Eucryptodira (Pleurosternidae indet., Platychelyidae indet., Plesiochelys cf. etalloni, Plesiochelys choffati, Anosteirinae indet.). Squamata: Scincomorpha (Becklesius hoffstetteri; Paramacellodus sp., Saurillodon proraformis, S. henkeli, S. cf. obtusus). Squamata: Anguimorpha (Dorsetisaurus pollicidens, Parviraptor estesi). Crown Lepidosauromorpha (Marmoretta sp.). Choristodera: Cteniogenidae (Ctenogenys reedi). Sauropterygia: Plesiosauria: Cryptoclidoidea: Cryptoclididae indet. Crocodylomorpha (Lisboasaurus estesi, L. mitrocostatus). Crocodyliformes: Neosuchia (Machimosaurus hugii, Goniopholis cf. simus, Goniopholis baryglyphaeus, cf. Bernissartia, Atoposauridae, Theriosuchus guimarotae, cf. Alligatorium, Metriorhynchus sp.). Pterosauria (Rhamphorhynchus sp., Pterodactylus sp.). Dinosauria: Theropoda (Ceratosaurus sp. , Torvosaurus sp., Lourinhanosaurus antunesi, Allosaurus europaeus, Cf. Compsognathus sp., cf. Richardoestesia sp., Dromaeosaurinae indeter., Velociraptorinae indeter., cf. Archaeopteryx sp., aff. Paronychodon). Dinosauria: Sauropoda: Eusauropoda (Dinheirosaurus lourinhanensis, Lourinhasaurus alenquerensis, Lusotitan atalaiensis, Apatosaurus sp.). Dinosauria: Ornithischia: Thyreophora (Dacentrurus armatus, Stegosaurus sp., Dracopelta zbyszewskii). Dinosauria: Ornithischia: Ornithopoda (Phyllodon henkeli, Dryosaurus sp., Hypsilophodon sp., Alocodon kuehnei, Trimucrodon cuneatus, Draconyx loureiroi).

Mateus, O. (2016).  Exemplos bizarros de evolução em dinossauros e alguns casos portugueses. Do Big Bang ao Homem. 81-95., Porto: U.Porto Edi{\c c}ões Abstract
n/a
Mateus, O., Natário C., Araújo R., & Castanhinha R. (2008).  A new specimen of spinosaurid dinosaur aff. Baryonyx from the Early Cretaceous of Portugal. Livro de Resumos do X Congresso Luso-Espanhol de Herpetologia. 51., Jan Abstract

n/a