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Abstract  Jacobs, L.L., Polcyn, M.J., Mateus, O., Schulp, A.S., Gonçalves, A.O. and Morais M.L. 2016. Post-Gondwana Africa and 
the vertebrate history of the Angolan Atlantic Coast. Memoirs of Museum Victoria 74: 343–362.

   The separation of Africa from South America and the growth of the South Atlantic are recorded in rocks exposed 
along the coast of Angola. Tectonic processes that led to the formation of Africa as a continent also controlled sedimentary 
basins that preserve fossils. The vertebrate fossil record in Angola extends from the Triassic to the Holocene and includes 
crocodylomorph, dinosaur, and mammaliamorph footprints, but more extensively, bones of fishes, turtles, plesiosaurs, 
mosasaurs, crocodiles, and cetaceans. Pterosaurs, dinosaurs, and land mammals are rare in Angola. The northward drift 
of Africa through latitudinal climatic zones provides a method for comparing predicted paleoenvironmental conditions 
among localities in Angola, and also allows comparison among desert and upwelling areas in Africa, South America, and 
Australia. South America has shown the least northward drift and its Atacama Desert is the oldest coastal desert among 
the three continents. Africa’s northward drift caused the displacement of the coastal desert to the south as the continent 
moved north. Australia drifted from far southerly latitudes and entered the climatic arid zone in the Miocene, more 
recently than South America or Africa, but in addition, a combination of its drift, continental outline, a downwelling 
eastern boundary current, the Pacific Ocean to Indian Ocean throughflow, and monsoon influence, make Australia unique.
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Introduction

The discovery of the dicynodont Lystrosaurus in Antarctica 
was taken at the time as clear evidence of continental drift 
because the geographic distribution of Lystrosaurus 
demonstrated previously conjoined landmasses during the 
Triassic (Elliot et al., 1970). However, since the acceptance of 
plate tectonics, the significance of widespread Jurassic and 
Early Cretaceous biogeographic distributions, which inform the 
subsequent breakup of Gondwana, has been less clear because 
of a dearth of fossils, unresolved phylogenetic relationships, 
imprecise chronology, and paleonvironmental uncertainties 
(Benson et al., 2012; Rich et al., 2014). Thomas H. Rich, to 
whom this volume is dedicated, through his persevering 
fieldwork, discoveries, and research on Early Cretaceous 
vertebrates in Australia, verified that major clades of terrestrial 
vertebrates were widely distributed across the globe during the 

Early Cretaceous, a concept that had not been devised when he 
began his career, but a necessity as important for understanding 
the breakup of Gondwana as Lystrosaurus was for its existence. 
Beginning mostly in the Early Cretaceous, Gondwana 
landmasses drifted apart to become their own largely isolated 
theaters of evolution while marine amniotes gained access to 
unbeheld shores through the formation of new seaways. 

Africa has a long and important vertebrate fossil record 
(Durand, 2005). Here we provide a summary of the results 
obtained by Projecto PaleoAngola from a decade of field 
expeditions focused on the fossil vertebrates, mainly amniotes, 
of Angola, southwestern Africa (Jacobs et al., 2006; fig. 1, 2). 
We provide a general overview of the dispersal of post-
Gondwanan land masses to form Africa, the opening of the 
South Atlantic Ocean, and the distribution of Cretaceous and 
younger African fossil localities, because accommodation of 
major tectonic forces conjoins the three. We then present the 
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chronological sequence of new and historical fossil occurrences 
in Angola and examine Angola’s setting with respect to 
northward tectonic drift and a growing South Atlantic Ocean, 
which are fundamental drivers of African paleoenvironmental 
change through time. We conclude with a brief comparison of 
the effect of northward drift on paleoenvironmental evolution 
among Africa, South America, and Australia leading to our 
modern world.

The Mesozoic Formation of Africa and the General 
Distribution of Sub-Saharan Fossil Localities

The formation of Africa as a distinct continent is a Mesozoic 
phenomenon resulting first from the split of Pangea and the 
opening of the Central Atlantic off northwest Africa beginning 
in the Triassic (Youbi et al., 2003). The Cretaceous Tethyan 
edge of African Gondwana was a promontory. This African 
promontory, with remnants remaining today in the Levant as 
well as in Europe, was covered with extensive warm, shallow, 
carbonate platforms, home to snakes with legs and the earliest 
mosasaurs, which were the unobtrusive precursors of the last 
major radiation of marine diapsids (Polcyn et al., 1999, 2003, 
2005, 2014; Rieppel et al., 2003; Tchernov et al., 2000; Jacobs 
et al., 2005a, b). Rifted portions from the African promontory 
drifted northward with Gondwanan fossils, ultimately to 
construct southern Europe (Dal Sasso and Maganuco, 2011; 
Müller et al., 2001; Polcyn et al., 1999; Stampfli, 2005; Zarcone 
et al., 2010). Cenozoic compressional forces, generated 
through collision of northwestern Africa with Europe in the 
early Paleogene, formed the Atlas Mountains, followed by 
mid-Cenozoic collision of northeastern Africa with Eurasia, 
both events having significant biogeographic consequences for 
the distribution of terrestrial mammals (Gheerbrant, 1990; 
Kappelman et al., 2003; Rasmussen and Gutierrez, 2009). 

Rifting of Africa’s eastern margin was heralded by the 
Jurassic-aged Karoo Large Igneous Province (LIP; 184–179 
Ma; Duncan et al., 1997; Jones et al., 2001; Jacobs et al., 
2005c), which was the African portion of the Karoo-Farrar 
Magmatic Province, extending from southeastern Africa 
across Antarctica into Australia and Tasmania. Madagascar 
and India rifted from East Africa, leaving in their wake the 
Somali Basin and the Cretaceous Anza Graben (fig. 1), an 
aulacogen extending inland from the coast toward southern 
Sudan (Tiercelin et al., 2012; Werner, 1994). The final phase in 
forming the outline of the African continent was the 
Cretaceous opening of the South Atlantic, producing the 
iconic puzzle-like fit of the African and South American 
coastlines (fig. 3). This final phase resulted in a northeastwardly 
directed aulacogen, the Benue Trough, extending from the 
Bight of Benin at the mouth of the Niger River on the coast to 
the Chad Basin (fig. 1).

The crustal movements that culminated in Africa as a 
unique continent were mainly, but not exclusively, expressions 
of extensional tectonics. Over the past 100 million years 
extensional tectonics have opened new oceans that allowed the 
spread of marine amniotes while reducing dispersal routes for 
terrestrial animals. Residual effects and accommodation 
within the continent are especially obvious in sub-Saharan 

Africa where they formed aulacogens, rift valleys, and coastal 
basins on older, preexisting mobile belts. These in turn largely 
controlled the occurrence and preservation of fossils in Africa 
during and since the Mesozoic.

The Benue Trough directed from the west coast and the 
Anza Graben directed from the east, along with East Africa’s 
Great Rift Valley (fig. 1), were developed on older structures. In 
each, a sequence of basins formed that preserves a progression 
of vertebrate fossils of decreasing age. Late Cretaceous 
dinosaurs and other vertebrates are found in Kenya’s Anza 
Graben (O’Connor et al., 2011), an area of crustal thinning and 
isostatic adjustment (Benoit et al., 2006). Remarkably, the 
topographic expression of the Anza Graben controlled drainage 
until the Miocene such that a 17 my old open ocean marine 
ziphiid whale stranded 740 km up the Anza Graben from the 
present day Indian Ocean shoreline (Mead, 1975; Wichura et 
al., 2015), at a present elevation of 620 m, indicating the 
presence of a large low gradient river in what is now one of the 
most arid regions of Kenya. The East African Rift Valley in 
Kenya is structurally developed across the Anza Graben in the 
Turkana Basin, an area famous for its record of primate 
evolution extending from Oligocene through Pleistocene 
(Leakey et al., 2011; Wood and Leakey, 2011). In the Rift 
Valley of Malawi, fossils of Permian, Early Cretaceous, 
Pliocene, and Pleistocene age lie in close proximity (Clark et 
al., 1989; Colin and Jacobs, 1990; Gomani, 1997, 2005; Jacobs 
et al., 1990, 1992, 1993, 1996, 2005c; Kruger et al., 2015; 
Schrenk et al., 1993). In the nearby Rukwa Basin of Tanzania, 
within the Rift Valley, a variety of fossils, including fish, 
crocodyliforms, dinosaur eggshell and bones, a Cretaceous 
mammal, and Oligocene primates and other mammals are 
found (Gorscak et al., 2014; Gottfried et al., 2004, 2009; Krause 
et al., 2003; O’Connor et al., 2010; Roberts et al., 2004, 2010, 
2012; Sertich and O’Connor, 2014; Stevens et al., 2008, 2013). 

In the Benue Trough (Obaje, 2009), the aulacogen on the 
opposite side of the continent from the Anza Graben, Early 
Cretaceous (Barremian) non-marine vertebrates are found in 
the Koum (Congleton et al., 1992; Jacobs et al., 1989; Flynn et 
al., 1987), Mayo Oulo Léré (Brunet et al., 1988a), and 
Barbouri-Figil (Michard et al., 1990; Colin et al., 1992) basins, 
prior to formation of the deep water connection between the 
North and South Atlantics. Late Cretaceous marine fish (Vullo 
and Courville, 2014), turtles, crocodiles, and the mosasaurs 
Goronyosaurus and Pluridens were discovered to the north 
and west in the Benue Trough and associated rift system 
(Azzaroli et al., 1975; Halstead, 1979; Soliar, 1988; Lingham-
Soliar, 1994, 1998). Stevens et al. (2011) described a Paleocene 
marine ichthyofauna from Nigeria. The Benue Trough extends 
northeastward to the Chad Basin, which contains terrestrial 
Neogene rocks with a diverse Late Miocene mammalian fauna 
including the oldest known hominid, Sahelanthropus (Brunet 
et al., 2002). Toward the west of the Chad Basin, Cretaceous 
rocks of Niger have yielded a remarkable fauna of Cretaceous 
dinosaurs and other vertebrates (Taquet, 1976; Sereno et al., 
2008). Toward the east, Cretaceous deposits are found in 
Sudan (Werner, 1994) and on to the Anza Graben.

Of course, the Mesozoic and younger fossils of Africa, like 
those of other Gondwana island continents, represent 
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populations evolving, dying, and being preserved since rifting 
began and the continent drifted. In the breakup of Gondwana, 
the relative motion of individual landmasses was largely away 
from each other and to the north (Jacobs et al., 2011). Their 
northward journeys, to the extent that each traveled, moved the 
continents across latitudinal climate zones denoted by 
atmospheric circulation, most notably the descending limbs of 
Hadley Cells, causing high-pressure arid zones. The northward 
progression of post-Gondwana continents through essentially 
fixed climate zones provides a method for large-scale, first-
order comparison of their environmental histories and a 
context for their preserved fossil records. 

Coastal Angola and the Africa - South America Split

A chronology of the growth of the South Atlantic Ocean and 
concomitant northward drift of Africa is shown in Figure 3. 
Africa’s drift can be followed especially well because conjugate 
basins shared between Africa and South America provide fixed 
starting points (Brownfield and Charpentier, 2006), and 
because of seafloor magnetic stripes (Cande et al., 1989; Müller 
et al., 1997; He et al., 2008), hot spot traces (O’Connor and le 
Roex, 1992; O’Connor et al., 1999), predicted paleolatitudes 
determined from igneous rocks (Strganac et al., 2014a), and 
fault zones that can be followed from the Mid-Atlantic Ridge to 
the coast of Africa (fig. 4) (Eagles, 2007; Guiraud et al., 2010). 

Numerous geophysical models address the opening and 
growth of the South Atlantic (Eagles, 2007; Gaina et al., 2013; 

Pérez-Diaz and Eagles, 2014; Torsvik et al., 2009). 
Uncertainties are introduced through an imprecise 
understanding of the extension of continental crust and the 
placement of the continent-ocean boundary, imprecise 
estimates of the amount and geographic effect of 
intracontinental structural accommodation to large scale plate 
motions; and in identifying the oldest magnetic chrons at 
specific positions along the African margin (Cande et al., 
1989; Müller et al., 1997; Gradstein et al., 2004, 2012; He et 
al., 2008). These uncertainties affect estimates of the initial 
timing of the opening and of the width of the seaway at specific 
times and latitudes early in its history. 

Eagles (2007) estimated the diachronous south to north 
opening of the South Atlantic took place over 40 my. Gaina et 
al. (2013) recognized older magnetic isochrons south of the 
Walvis Ridge, but only younger isochrons north of the Walvis 
ridge. According to Gaina et al. (2013), the generation of 
oceanic crust north of the Walvis Ridge probably was initiated 
at about the beginning the Cretaceous Normal Superchron 
(120.6 Ma). 

Torsvik et al. (2009) noted two Cretaceous magmatic 
episodes around the South Atlantic, the earlier being the 
Etendeka-Paraná LIP (133–130 Ma), heralding the opening of 
the South Atlantic, the younger peaking at about 84 Ma. The 
Etendeka Basalt is dated in Namibia at 132±1 Ma (Renne et 
al., 1996) and tholeiitic rocks in the Kwanza Basin, Angola, 
are ~132 Ma (Marzoli et al., 1999). These represent the older 
magmatic event. Soon after Etendeka magmatism, oceanic 
crust began to form south of the Walvis Ridge, but not to the 
north of it, as determined because none of the M magnetic 
chrons are clearly recognized north of the Walvis Ridge 
(Gaina et al., 2013). Chron M0 marks the base of the Aptian 
Stage, so regardless of numerical calibration of M isochrons, 
crustal extension occurred along the Angolan coast during the 
Barremian (125–130 Ma) and into the Aptian, culminating in 
Aptian seafloor spreading at around 121 Ma. 

Kimberlite was emplaced along the Lucapa Fault Zone, 
which helps control continental shelf width along the 
southern Angola coast, at 117 Ma (mid-Aptian) (fig. 4). 
Marine fossils with northern affinities are first noted in the 
South Atlantic in the Sergipe and other northern basins in 
Brazil at 115 Ma (Bengston and Koutsoukos, 1992; Arai, 
2014), while a deepwater passage between the North and 
South Atlantics developed between 100 and 90 Ma (Eagles, 
2007; Handoh et al., 1999). The younger South Atlantic 
magmatic event of Torsvik et al. (2009) is recorded in Angola 
by the Ombe Basalt at Bentiaba in Namibe Province, dated at 
84.6 ± 1.5 Ma (Strganac et al., 2014b). Predicted paleolatitude 
of the Ombe Basalt at its emplacement determined from 
oriented paleomagnetic samples was 24.5° S. The width of 
the South Atlantic was some 2700 km at that time and 
latitude, roughly half that of its current width (Strganac et al., 
2014a; Reeves, 2014).

Angola is unique in having excellent exposures that 
illuminate this profound geological history. These exposures 
were well mapped by Carvalho (1961) in Namibe Province in 
southern Angola, although his work predated the acceptance 
of plate tectonics (see also Masse and Laurent, 2015). Field 

Figure 1. Map of Africa showing location of Angola and simplified 
major structural features controlling placement of some important 
fossiliferous regions. Coastal basins are not included.
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relationships of rocks between Bentiaba and Piambo, a 
distance of ~50 km to the south of Bentiaba, are shown in 
Figure 5. The South Atlantic boundary fault separates 
Precambrian granitic rocks to the east from younger volcanic 
and sedimentary units to the west. Both magmatic events of 
Torsvik et al. (2009; i.e., Etendeka and Ombe) are represented 
in outcrop, with gypsum and conglomerates in between. The 
boundary fault is overstepped at Piambo by biostratigraphically-
dated Late Cretaceous (Maastrichtian) marine sediments 
equivalent to the upper fossiliferous beds at Bentiaba and 
Cacoto (Bentiaba II) 50 km to the north. This section is an 
exemplary geological representation of the opening and 
growth of the South Atlantic Ocean.

In addition, as exemplified in Namibe Province, the fault 
zones propagating from the Mid-Atlantic Ridge controlled the 
width of the continental shelf and hence played a direct role in 
the depositional setting that preserved fossils on the shelf 
some 40 million years after the South Atlantic started to open 
(Strganac et al., 2014b; fig. 4, 5). The Lucapa and Benguela 
fault zones established margins for the narrowest continental 
shelf in West Africa. The Lucapa Fault Zone can be traced 
inland to the Catoca diamond mine where it is characterized 
by kimberlites with U-Pb zircon ages of ~117 Ma (Pervov et 
al., 2011). The Luxinga Field, 80 km to the southwest of 
Catoca, has dates derived from kimberlites of 145–113 Ma 
(Pervov et al., 2011). Activity on the Lucapa fault zone, taken 
with the chronology of the opening of the South Atlantic and 
the biochronology of fossils (Tavares et al., 2006), constrains 
the formation of the continental shelf, as opposed to the South 
Atlantic opening, to late Early Cretaceous (Aptian), around 
117 Ma.

The Fossil Record of Amniotes in Angola

The first comprehensive review of Angolan vertebrate fossils 
was that of Antunes (1964). More recently, Cretaceous amniote 
faunas of Angola were reviewed by Mateus et al. (2012). 
Sharks were reviewed by Antunes and Cappetta (2002; 
Balbino and Antunes, 2007). Since 2005 Projecto PaleoAngola 
has discovered new sites and visited most of the sites discussed 
by Antunes (1964) that are still accessible, although some have 
been lost to growth or the ravages of former prolonged conflict. 
Antunes (1964, his plate 3, fig. 5) illustrated a whale “bone 
graveyard” (cemitério dos ossos) that has since been engulfed 
by the capital city of Luanda. 

The main localities worked by Projecto PaleoAngola (fig. 
2) are discussed below in geographical and roughly 
chronological order (fig. 6). Most of these sites are in coastal 
basins along the continental margin with sedimentation 
controlled by eustatic sea level (Müller et al., 2008) in 
conjunction with structural motions ascribed to salt tectonics 
and movements along preexisting faults (Brognon and Verrier, 
1966; Cauxeiro et al., 2014; Ciampo et al., 2001; Guiraud et al., 
2010; Hudec and Jackson, 2002; Jackson and Hudec, 2005). 

Only two known Mesozoic Angolan fossiliferous areas are 
fully continental and found inland from the coast. One of 
these, the Cassange Depression (Triassic), predates the initial 
opening of the South Atlantic, and the second, the Catoca 
Diamond Mine, dates from the late Early Cretaceous, some 15 

Figure 2. Location map of major fossil localities and cities in Angola. 

Figure 3. Northward drift of African and South American conjugate 
basins relative to Hadley Cells and the chronology of the South 
Atlantic Ocean. Inset shows conjugate Sergipe-Gabon and Campos-
Kwanza basins in South America and Africa. From the initial opening 
of the South Atlantic Ocean heralded by the Etendeka-Paraná Large 
Igneous Province (LIP), the basins drifted from their starting position 
in interior Gondwana. As the width of the South Atlantic has grown, 
Africa has also drifted north relative to South America and through 
the latitudes of the descending limb of the southern Hadley Cell.
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million years after Africa and South America began to 
separate, but during kimberlite emplacement on the Lucapa 
fault zone (Pervov et al., 2011).

Cassange Depression. The Cassange Depression lies west of the 
city of Malanje in Malanje and Lunda Norte Provinces, 
northeastern Angola (fig. 2). Catuneanu et al. (2005) considered 
the Cassanje Depression to be a sag basin, at times holding a 
saline inland lake (Oesterlen, 1976, 1979), extending in age from 
the Late Permian to the Middle or Late Triassic. Five genera and 
six species of freshwater fish represented by nicely preserved 
specimens in laminated shale have been reported from there, but 
it appears no vertebrate paleontologist has ever yet visited the 
sites and no systematic collecting effort in the Cassange 
Depression has been undertaken (Antunes et al., 1990; Mouta, 
1954; Mouta and Dartevelle, 1954). Projecto PaleoAngola 
attempted to prospect the area in 2012, but was thwarted by the 
presence of landmines and unexploded ordnance remaining 
from Angola’s war years prior to 2003. The fauna listed by 
Murray (2000) from the Cassange Depression includes the shark 
Lissodus cassangensis, Angolaichthys lerichei (Halecostomi 
incertae sedis), the paleoniscoids Perleidus lutoensis, Marquesia 
moutai (Canobiidae incertae sedis), and Microceratodus sp., a 
lungfish. Plants, crustaceans, and an insect, in addition to fish, 
have been reported (Nunes, 1991; Schlüter, 2003). Antunes et al. 
(1990) assigned an Early Triassic age to the assemblage. 

Catoca Diamond Mine. Mammaliamorph, crocodylimorph, 
and sauropod tracks were discovered in lacustrine diatreme 
sediments at the Catoca Diamond Mine, the fourth largest 
diamond mine in the world, Lunda Sul Province, northeastern 
Angola (fig. 2). One sauropod track has skin impressions 
preserved (Marzola et al., 2014). The most surprising feature 
is the unexpectedly large size of the mammaliamorph 
footprints, measured in centimeters, considering their age is 
Early Cretaceous. The Catoca Mine is located in the southern 
Congo Basin, which has recently been the subject of renewed 
investigation (de Wit et al., 2015). Other Cretaceous vertebrates 
reported from the correlative Kwango Group (Roberts et al., 
2015) in the general region include sauropod bones and a 
pterosaur (Cahen, 1954; Swinton, 1948).

Mining activities at Catoca are focused on a kimberlite 
pipe emplaced along the continental extension of the Lucapa 
fault zone, which can be traced seaward to the Mid-Atlantic 
Ridge. U-Pb SHRIMP eruption age dates on zircons from the 
kimberlite pipe are 117±0.7 Ma (Aptian), providing a 
maximum age for the track-bearing sediments of the diatreme 
associated with the diamond-producing kimberlite. Early 
Cretaceous vertebrate localities in Africa have little to 
constrain their ages (Le Loeuff et al., 2012). The Catoca Mine 
provides one of the few limiting quantitative age estimates for 
Early Cretaceous vertebrate fossils in Africa. More broadly, 
Linol et al. (2015) correlate the Kwango Group, in which by 

Figure 4. Trace of fault zones (FZ) from Mid-Atlantic Ridge to the African coast (a) and bathymetric map of coastal Africa showing width of 
continental shelf (b). The rich marine amniote fossil locality of Bentiaba was formed on the fault-controlled, narrow portion of the continental 
shelf (modified from Strganac et al., 2015a).
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extension we would include sediments in the Catoca crater, 
with the Bauru Group in the Paraná Basin of Brazil, which 
has produced a number of sauropods and other vertebrate 
taxa, but only one jaw fragment with a premolar of a small 
mammal (Candeiro et al., 2006). A larger mammal, 
Vincelestes, is known from the Early Cretaceous of Argentina.

In sub-Saharan West Africa, the only known Early 
Cretaceous mammals are the minute tooth taxon Abelodon 
abeli, identified as a peramurid, and a few other teeth, plus a 
jaw fragment from the Early Cretaceous of the Koum Basin, 
Cameroon (Brunet et al., 1988b, Brunet et al., 1990; Jacobs et 
al., 1988). A gondwanathere was described from a single 
tooth-bearing dentary from mid-Cretaceous deposits of 
Tanzania (Krause et al., 2003), but the mammaliamorph 
tracks from Catoca are too large to have been made by any 
known African Cretaceous mammal. The newly described 
gondwanathere Vintana sertichi from Madagascar is quite 
large, perhaps large enough to produce the tracks, although its 
feet are unknown and it is some 50 my younger (Krause, 
2014; Krause et al., 2014). Nevertheless, Africa and 
Madagascar split in the Early Cretaceous (Jacobs et al., 2011) 
and gondwanatheres and other mammals were widely 

distributed across Gondwana at that time; however, their 
diversity and disparity remain elusive but expanded by the 
tracks at Catoca. 

Iembe. The Tadi beds of the Itombe Formation (Mateus et al., 
2011), near the village of Iembe in Bengo Province north of 
Luanda (fig. 2), is the type locality for the turtle Angolachelys 
mbaxi (Mateus et al., 2009), the mosasaurs Angolasaurus 
bocagei and Tylosaurus iembeensis named by Antunes (1964), 
and the first dinosaur discovered in Angola (Mateus et al., 
2011), the titanosauriform sauropod Angolatitan adamastor. 
The age of the Tadi beds was determined as late Turonian by 
Antunes (1961, 1964; Lingham-Soliar, 1994) and Antunes and 
Cappetta (2002) based on the ichthyofauna. Projecto 
PaleoAngola has measured approximately 150 m of section at 
the site. Vertebrates, especially fishes, occur throughout the 
section (Mateus et al., 2009). Angolasaurus falls within the 
lower third to half of the section and is biochronologically  
consistent with a late Turonian age, about 90 Ma. However, 
small and distinctive mosasaur vertebrae and the sharks found 
at the top of the section suggest it may extend into the 
Coniacian or possibly lower Santonian.

Figure 5. Angolan coastal geology between Bentiaba in the north and Piambo in the south, a distance of ~50 km, in Google Earth™ (a, b, and c) 
and outcrop views (d and e): a, boundary fault trace lies between synrift terrestrial deposits (S) and crystalline basement (C); b, oblique view 
showing gray gypsum deposited on Entendeka Basalt at Piambo with Bentiaba in the distance; c, plan view of Piambo showing gray gypsum, 
Entendeka Basalt (E), and marine Maastrichtian (M) overstepping boundary fault; d, looking from crystalline basement (near M in c) to 
southwest, base is Etendeka (E) followed by gypsum (G) and synrift conglomerates capped by dark Ombe Basalt topped by marine Maastrichtian 
(M); e, looking across valley showing pointed hill of Etendeka (E) on left, overlain by synrift conglomerates (S), and flat-lying Ombe Basalt (B), 
capped by Maastrichtian marine sands (M). 
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Bentiaba. The section at Bentiaba, Namibe Province (fig. 2), 
extends from Cenomanian to late Maastrichtian and is dated by 
carbon isotope chemostratigraphy and magnetostratigraphy, 
anchored by 40Ar/39Ar dates on the intercalated Ombe Basalt 
(84.6±1.5 Ma; Santonian; Strganac et al., 2014b). Invertebrate 
fossils of the Bentiaba area were studied by Cooper (1972, 
1976, 1978, 2003a, 2003b), who also collected shark teeth and 
a tetrapod jaw now in the Iziko South African Museum. 
Vertebrate occurrences are scattered throughout the section 
above the Ombe Basalt in the Baba and Mocuio formations. 
The Campanian assemblage from the Baba Formation includes 
russellosaurine and mosasaurine mosasaurs distinct from those 
found at Maastrichtian levels in the Mocuio Formation, most 
notably, the overlying Bench 19 Fauna.

The Bench 19 Bonebed at Bentiaba has produced one of the 
richest Cretaceous marine amniote faunas known (table 1), 
including turtles (Mateus et al., 2012), mosasaurs (Polcyn et al., 
2010; Schulp et al., 2006, 2008), and plesiosaurs (Araújo et al., 
2015a, b), with rare pterosaur and dinosaur bones (Mateus et al., 
2012). It is a unique concentration of marine vertebrates because 
it was preserved on an uncharacteristically narrow continental 
shelf near the Lucapa fault zone that appears to have controlled 
the coastal outline of Africa in the formation of the South 
Atlantic Ocean (fig. 4). The Lucapa Fault Zone links the shelf to 
the Mid-Atlantic Ridge on the one hand and to the Catoca 
kimberlite on the other. The sediments of the Bench 19 interval 
are immature feldspathic sands, determined by detrital zircon 
provenance to be derived from nearby granitic rocks, transported 
to the narrow shelf by short, intermittent rivers, similar to the 
setting seen today at analogous latitudes in Namibia. The age of 
Bench 19 was determined by magnetostratigraphic correlation 
to chron C32n.1n, between 71.4 and 71.64 Ma (Strganac et al., 
2014b). The Bonebed formed at a paleolatitude near 24°S, when 
the Atlantic width at that latitude approximated 2700 km, 
roughly half that of the current width. Biostratigraphic 
uniformity of the Bench 19 fauna, evidence of interspecies 
interactions, including gut contents and scavenging marks, and 
the presence of pterosaur and dinosaur bones in a marine 
setting, indicate that the accumulation was attritional but 
occurred in an ecological time dimension within the 240 ky bin 
delimited by chron 32n.1n (71.40–71.64 Ma). The spatial 
distribution and taphonomy of fossils suggest a rich feeding area 
for diverse top consumers in waters 50–100 m in depth and at a 
water temperature based on δ18O from bivalve shells of 18.5° C 
(Strganac et al., 2014a, 2015).

The upper beds at Bentiaba, above the Bench 19 interval, 
and at nearby Cacoto (Bentiaba II) are biostratigraphically 
distinct from those containing the Bench 19 fauna. Most 
notably, they contain the mosasaur genus Carinodens and a 
large Prognathodon similar in grade to P. saturator from 
Europe (Schulp et al., 2013). Globidens, known by several 
individuals from the Bench 19 Fauna, is not known from 
Bentiaba upper levels, nor is the thick-shelled bivalve 
Inoceramus, which Globidens is known to have eaten (Polcyn 
et al., 2010). Nurse sharks (Ginglymostomatidae) are first 
seen in the upper levels and Squalicorax teeth obtain more 
extreme size classes (larger and smaller) than those from the 
Bench 19 interval.

Figure 6. Chronological sequence of major vertebrate-bearing 
localities investigated by Projecto PaleoAngola; chronostratigaphy 
following IUGS/ICS v. 2014/2 (www.stratigraphy.org).
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In the Tzimbio Valley, between Bentiaba and Cacoto, a 
few fragments of fossil wood, bivalve shells, and dinosaur 
bone were found in layers mapped as Albian. Near Bentiaba, 
late Neogene or younger sea-level change resulted in a terrace 
(Sessa et al., 2013) topped with beach deposits of tossed 
Cretaceous red sandstone beach boulders with barnacles 
distributed over their entire surfaces. The Cretaceous section 
at Bentiaba is capped by a Pleistocene caliche with rare 
fragmentary carbonate encrusted mammal bones and teeth 
and ostrich eggshell.

Benguela. Fragmentary whales, sirenians, and large 
Carcharocles sharks (following Ehret et al., 2009) were 
discovered in the lower Sombreiro sandstones of Burdigalian 
age (late early Miocene, 20.4–15.97 Ma, Gradstein et al., 2012; 
Brownfield and Charpentier, 2006; Brognon and Verrier, 1966; 

Guiraud et al., 2010), 13 km southwest of the provincial capital 
of Benguela (fig. 2). A partial whale skull shares derived 
characters with the Pygmy Right Whale (Caperea) and with 
rorqual whales. Late Neogene whale bones are found in 
concretions and as isolated elements along the shore at Baia 
Farta and neighboring bays (Antunes, 1964). In 1931, the 
German geographer Professor O. Jessen visited what he referred 
to as Bahia Farla [sic], indicated by his map to be Bahia Farta 
(Jessen, 1936), where he picked up a few vertebrae and a jaw 
fragment, now at the Eberhard-Karls University in Tübingen. A 
Pleistocene, nearly complete, rorqual skeleton identified as Blue 
Whale (Balaenoptera sp.) was discovered in Benguela, and is 
now at the Benguela Archaeology Museum (Gutierez et al., 
2001, 2011). An exceptionally large fossil dentary of Blue Whale 
(Balaenoptera musculus) without data is present in the Natural 
History Museum in Luanda. Plant leaf impressions in carbonate 
are known from north of Benguela, presumably from karst 
fissures, but no collections have been made to date.

Barra da Cuanza (also spelled Kwanza, Kuanza and Quanza). 
A large number of cetacean bones and a crocodilian skull, most 
encrusted on all surfaces with limestone containing abundant 
mollusks and megatoothed shark teeth, were found 
approximately 5 km north of the Kwanza River mouth in 
Luanda Province (fig. 2). The sediments there correlate with 
the spectacular cliffs of Miradouro da Lua studied by Cauxeiro 
et al. (2014), who consider the age of unit 2 to be Messinian 
(Late Miocene), or about 6 Ma, to the north of the Barra da 
Cuanza section. Fossils at Barra da Cuanza occur in unit 2 of 
Cauxeiro et al. (2014). The crocodile skull is not fully prepared 
but appears to be a very large Crocodylus and probably an 
early record for the genus (Brochu and Storrs, 2012). Of the 
whale fossils, the most spectacular is a mysticete skull lacking 
the anterior portion of the rostrum, with two fish preserved in 
its blowhole.

Although the fossil record of neobalaenid whales is sparse 
(Buono et al., 2014; Fitzgerald, 2012), both the Benguela and 
the Kwanza skulls share three synapomorphies with the 
Pygmy Right Whale, Caperea marginata, traditionally 
considered the only living species of the family Neobalaenidae. 
Recently, however, Fordyce and Marx (2012) posited that 
Caperea was the last of the cetotheres, formerly known only 
as fossils, thereby invalidating Neobalaenidae as a family and 
reducing it to a subfamily within Cetotheriidae. The Angolan 
specimens appear to have a significant bearing on the 
relationships of neobalaenids, balaenopterids, and cetotheres.

Cabinda. Fossils from Cabinda (fig. 2), Angola’s northernmost 
province, were discovered and reported by Belgians in the first 
half of the 20th Century (Vincent et al., 1913). Cabinda is a 
tropical enclave north of the Congo River. Localities are 
nearshore marine and purportedly range in age from 
Cretaceous through Oligocene or possibly Early Miocene. 
Reported Cretaceous localities are currently grown over. 
Projecto PaleoAngola was unable to locate the fossiliferous 
Paleogene limestone of Sassa Zau along the Chiloango River, 
reported by Antunes (1964) to contain fish, turtle carapace and 
plastron fragments, vertebrae of the snake Palaeophis, and 
crocodile teeth and bones. The main exposures in Cabinda are 

Table 1. Bench 19 faunal list (after Strganac et al., 2014a).
Chondrichthyes
 Elasmobranchii
  Squalicorax pristodontus
  Odontaspidae indet.
  cf. Ganopristis sp.
  Brachyrhizodus sp.

Osteichthyes 
 cf. Eodiaphyodus sp.
 Enchodus sp. 
 ?Sphyraenidae sp.

Testudines
 Cheloniidae
  Euclastes sp.
 Protostegidae
  ?Calcarichelys sp.
  Protostega sp.
 Toxochelyidae
  Toxochelys sp.

Squamata
 Mosasauridae
  Globidens phosphaticus
  Halisaurus sp.
  Mosasaurus sp. 
  Phosphorosaurus sp.
  “Platecarpus” ptychodon
  Prognathodon kianda

Sauropterygia
 Plesiosauria
  Elasmosauridae
   Aristonectinae indet.
   Cardiocorax mukulu

Pterosauria
 Ornithocheiroidea indet.

Dinosauria
 Hadrosauroidea indet.
Dinosauria indet.
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along sea cliffs between Lândana and Sapho, as the stretch 
along the southern shore of Malembo Point is called. The 
oldest locality Projecto PaleoAngola visited in Cabinda is 
Lândana (Paleocene), best known for marine fish (Vincent et 
al., 1913; Cahen, 1954; Casier, 1960; Dartevelle and Casier, 
1943, 1949, 1959; Hussakof, 1917), turtles (Dollo, 1925; Wood, 
1973, 1975), and dyrosaurid crocodilians (Jouve and Schwarz, 
2004; Schwarz, 2003; Swinton, 1950). Between Lândana and 
Malembo the intervening strata contain mainly shark teeth. 
The dark sediments at Malembo contain carbonized plant 
fragments, standing in contrast to Paleogene and Neogene 
sediments in southern Angola, which are consistently light 
colored and lack carbonized plant material.

Malembo Point (called Malembe in older literature but 
Malembo on maps and signs, Antunes, 1964) is a promontory 
headland on the south side of a small bay. Beta m’Bembe is on 
the north side of Malembo Bay, and Sapho lies along the south 
side of the promontory. Rare, isolated, sometimes abraded and 
phosphatized mammal teeth and sirenian rib fragments, first 
reported by Dartevelle (1935a, b), along with shark and ray 
teeth and crocodile fragments, are found along this stretch of 
sea cliffs. Hooijer (1963) described the mammals and 
considered them to be Early Miocene in age. Pickford (1986) 
revised their identifications and assigned an Early Oligocene 
age. An incisor originally identified as the chalicothere 
Macrotherium (?) was reidentified as Arsinoitherium. 
Hooijer’s new anthracothere genus Anthracotheriidarum was 
reidentified as the hyrax Geniohyus aff. mirus, and Hooijer’s 
suiform species Palaeochoerus dartevelli was reidentified as 
Bunohyrax aff. fajumensis. The proboscidean Trilophodon 
angustidens was reidentified as cf. Phiomia or Hemimastodon. 
An incisor identified by R.J.G Savage as cf. Amphicyon 
(reported in Hooijer, 1963) was reindentified by Pickford 
(1986) as an anthropoid canine, but its whereabouts are no 
longer known. The effect of these re-identifications was to 
characterize the Malembo fauna as essentially like that of the 
Fayum, Egypt, implying a widespread geographic uniformity 
of the African Paleogene mammalian fauna. 

Tooth-producing sediments of the Malembo promontory 
range from pebbly clay to coarse conglomerate and crop out at 
sea level on active beaches. All known mammal fossils from 
there, except sirenian rib fragments, which are pachyosteosclerotic 
(Domning and de Buffrénil, 1991), were preserved as single 
teeth or pieces, occasionally in jaw fragments. Given the high-
energy geological context of the fossils and the active shore 
processes eroding them out, Projecto PaleoAngola prospects 
these outcrops yearly. Two new specimens, while poorly 
preserved, are sufficient to indicate that the Malembo fauna is 
distinct in composition from any level of the Fayum. The first is 
a ptolemaiidan molar more similar to Kelba from Songhor, 
Kenya (19.5 Ma) than to Fayum Ptolemaiia because it has mesial 
and distal cingula and the paracone and metacone are widely 
separated. The second specimen from Malembo is the P4 of a 
large primate unlike any described taxon, and being comparable 
in size to that of a female gorilla, it is certainly larger than Fayum 
primates. In addition, an arsinoithere anterior tooth from 
Malembo is apparently smaller than in other arsinoitheres 
(Sanders et al., 2004).

No radiometric dates have been determined for Malembo 
or other sites in Cabinda (contra the lapsus in Seiffert, 2010, 
his table 2.1, where the indication was likely meant for Rukwa, 
one step up in the table). Seiffert (2010) accepted an Oligocene 
age for Malembo based on Pickford’s (1986) analysis of 
mammals, but states that more informative fossils or 
radiometric dates are necessary to determine whether the age 
of Malembo is Early Oligocene or Late Oligocene. The closer 
similarity of the Malembo ptolemaiidan tooth to East African 
Miocene Kelba than to Fayum Ptolemaiia, and its association 
with arsinoitheres, suggests a late, if not latest Oligocene age 
for Malembo, perhaps comparable in age to Chilga, Ethiopia 
(Kappelman et al., 2003), Nakwai, Kenya (Rasmussen and 
Gutierrez, 2009), or Rukwa, Tanzania (Roberts et al., 2012), or 
between about 25 and 23 Ma. While following Pickford (1986) 
there were no taxa identified to lend West Africa a distinction 
in faunal composition from other areas of Africa. However, 
the presence of a new ptolemaiidan, the unnamed but new 
primate, and perhaps the small arsinoithere provides the first 
indications of faunal differentiation between East, West, and 
North Africa during this time interval. 

Humpata Caves. The coastal region of Angola is delimited 
from the interior by the main boundary fault (shown at Bentiaba 
in fig. 5) and a spectacular escarpment called the Serra da 
Chela, especially along the border of Namibe and Huila 
provinces. The Serra da Chela is the edge of a plateau formed 
primarily of Precambrian granitic rocks but overlain in places 
by the Chela Dolomite. In the area around Humpata southwest 
of Lubango (fig. 2), the Chela Dolomite hosts caves and fissures 
exposed in quarrying operations for cement. Many of these are 
fossiliferous (Amaral, 1973; Antunes, 1965; Arambourg and 
Mouta, 1952; Beetz, 1933; Dart, 1950; Franca, 1964; Mason, 
1976; Mouta, 1950). Pickford et al. (1990, 1992, 1994) listed 44 
taxa of vertebrates, most of which are mammals, mainly 
rodents, from these Humpata Caves. The most thoroughly 
studied of the Humpata fossils are those of the extinct baboon 
referred to as Theropithecus (Omopithecus) baringensis or 
Papio (Dinopithecus) quadratirostris (Delson and Dean, 1992; 
Jablonski, 1994; Jablonski and Frost, 2010; Minkoff, 1972). 
Pickford et al. (1992) attribute a Pliocene-Pleistocene age to the 
fossils, but recognize that ages may vary among localities. 
Gilbert et al. (2009) compared taphonomic features of the 
Humpata fossils with those of Taung and other southern 
African fissure localities and concluded that the Humpata 
bones were concentrated by raptor predation. Off the plateau, 
near the coast along Rio Curoca, Projecto PaleoAngola 
discovered a Holocene midden, which has not yet been 
adequately collected.

Northward Drift of Africa

As alluded to above, the position of a continent below a high 
pressure descending limb of an atmospheric Hadley Cell is a 
first order predictor of continental aridity and coastal 
upwelling between 15° and 30° latitude, notwithstanding 
significant but regional, transient, or smaller scale perturbations 
and trends (Etourneau et al., 2009; Heyman et al., 2004; Jung 
et al., 2014; Rommerskirchen et al., 2011; Shuster, 2006; 
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Zhang, 2014). Africa currently straddles the descending limbs 
of both the northern and southern hemisphere Hadley cells, it 
has done so since it became defined as a continent, and it is the 
only continent with that distinction. 

As the South Atlantic widened since its opening, Africa 
drifted ~12º north and rotated ~45º degrees counterclockwise 
(calculated using Scotese, 2008). Figure 7 shows the northward 
drift of selected coastal Angola sites to illustrate their passage 
through the Southern Hemisphere subtropical arid zone 
resulting from Hadley circulation. Also included is the trace 
for the Dekese drill core, Democratic Republic of the Congo 
(Cahen et al., 1960), and for the Orange River mouth in South 
Africa. The Dekese core includes Jurassic and Early 
Cretaceous strata similar to those in the Samba Core (Cahen et 
al., 1959) deposited prior to the split of Africa and South 
America. Isotopic analysis of paleosols sampled by the Samba 
core indicate a hot, arid climate in interior Gondwana (Myers 
et al., 2011, 2012), consistent with climate models (Sellwood 
and Valdes, 2006, 2008; Valdes and Sellwood, 1992). The 
location of the Samba core drill site now lies in the tropics but 
its location was in the arid subtropics in the Jurassic and 
Cretaceous. Fossil plants of Coniacian age from the Orange 
River indicate a temperate climate (Stevenson et al., 2003), but 
it now lies at the southern margin of the hyper-arid Namib 
Desert, also called the Skeleton Coast. 

All the localities discovered at Iembe and Bentiaba were 
formed under climatic conditions imposed by the descending 
Hadley limb. Iembe has since drifted into the tropics and 
Bentiaba lies at the northern limit of the Skeleton Coast 
desert (fig. 7). Strganac et al. (2014a) argue that Bentiaba was 
formed in a setting similar to that of the Skeleton Coast, 
between 20º and 24ºS paleolatitude. An inference of coastal 
upwelling is based on the prevalence and abundance of 
marine top-consumers and coeval petroleum source rocks 
with type II kerogen derived from marine plankton 
(Zimmerman et al., 1987). Coastal desert is suggested by 
short intermittent rivers draining into the sea inferred from 
provenance of detrital zircons in sediments from mosasaur 
excavations (Strganac et al., 2014a). If these interpretations 
are correct, they can be extended to Iembe because of its 
paleolatitude at the time of formation. Thus, the position of 
upwelling cells and coastal deserts are inferred from 
paleogeography to have migrated south along the coast as 
Africa drifted north (Jacobs et al., 2009). The Benguela 
Large Marine Ecosystem and Skeleton Coast are the modern 
manifestations of this environmental setting. 

The hypothesis that the Cretaceous coastal sites of Angola 
formed in an environment similar to the modern Skeleton 
Coast raises the question of the age of the desert (Torquato, 
1970). The Skeleton Coast, extending from southern Angola 
through Namibia into South Africa (Seeley, 1990), is a classic 
coastal desert (Glennie, 1987) resulting from the orientation of 
the coastline below the high-pressure, descending limb of the 
Southern Hemisphere Hadley cell between 15º and 30ºS, 
exacerbated by upwelling that brings cold, nutrient-rich water 
to the surface. The stratigraphic evidence for aridity in that 
region is the lithified aeolianites of the Etjo Sandstone 
underlying the Etendeka Basalts in the Huab Basin, Namibia 

(Catuneanu et al., 2005; Jerram et al., 2000a, b; Mountney et 
al., 1998, 1999a, b). This relationship of fossilized sand dunes 
underneath basalts of the Etendeka-Paraná LIP establishes 
arid conditions in this portion of Gondwana prior to 133 Ma. 
While this has been used as evidence for an Early Cretaceous 
age of the Skeleton Coast Desert (Goudie and Eckardt, 1999; 
Jerram et al., 2000a, b; Vogel, 1989; Ward and Corbett, 1990), 
it essentially predates the formation of the South Atlantic, 
reflecting instead the aridity of Gondwana, consistent with 
data from the Samba core (Myers et al., 2011, 2012). 

However, the Benguela Current and associated upwelling 
(Shannon and Nelson, 1996), currently the foundation of the 
highly productive Benguela Large Marine Ecosystem (Cury 
and Shannon, 2004), is generally considered to be about 10 
million years old (Miocene; Siesser, 1978, 1980), and therefore 
apparently too young to explain Cretaceous productivity 
(Dupont et al., 2005; Diester-Haass et al., 2002, 2004). We 
would suggest that while the intensification and other trends in 
the Benguela Current documented since the Miocene are 
valid, aridity on the continent and upwelling along the coast at 
the appropriate latitudes are likely and supported by the lines 
of evidence discussed above, although on a geologic timescale 
their position relative to the continent has changed. Thus, the 
age of the Skeleton Coast and associated upwelling varies 
along the African South Atlantic margin.

The Paleogene localities of Lândana and Malembo in the 
northern province of Cabinda fall along the latitudinal trace 
of the Dekese core. Lândana was formed at 15ºS paleolatitude, 
the predicted northern margin of the southern arid zone at the 
time. Malembo formed slightly south of its current 5ºS in an 
interval of slow northward drift. That paleogeographic setting 
lends the few terrestrial mammals from Malembo, which are 
both low latitude and low elevation, a greater measure of 
significance as they are currently the only West African 
window into that environment. 

This study has focused on the Angolan record; however, 
as stated previously, Africa straddles the descending limbs of 
both the northern and southern Hadley cells.  Interestingly, 
the Cenozoic stratigraphy of the Sahara as presented by 
Swezey (2009) can plausibly be interpreted as having elements 
of drift-controlled paleoenvironmental change, suggesting 
that the gross antitropical patterns and historical distributions 
of environments have a common, specifically African, first-
order cause related to northward drift.

Comparison of the drift paths of Africa, South America, 
and Australia

In addition to examining the effects of latitudinal drift on the 
eastern South Atlantic Coast, we compared the latitudinal 
drift of Africa, South America, and Australia at 25ºS present 
day latitude from 160 Ma to the present (fig. 8). This latitude 
was chosen because it is that of the main Namib Desert Sand 
Sea and the strongest upwelling cell of the Benguela Current, 
well within the 15º–30º subtropical arid zone. The latitude of 
25ºS in Africa today falls between Walvis Bay and Lüderitz, 
Namibia, in South America near Taltal, Chile, and at Shark 
Bay, Australia.
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South America has the longest drift history within arid 
paleolatitudes, predicting the Atacama as the oldest coastal 
desert among Africa, South America, or Australia. Hartley et 
al. (2005) provided sedimentary evidence for Atacama aridity 
since the Jurassic. In addition, Hartley et al. (2005) noted that 
the continentality effect, whereby moisture is drained from the 
atmosphere as it travels west over the continent, is an important 
factor in the case of the Atacama Desert, enhancing aridity of 
the west coast even in the Mesozoic absence of the rain-
shadowing Andes. Hyperaridity is exacerbated today by the 
Humboldt Current, which presumably has existed as long as 
the desert. Marine vertebrate fossils occur in outcrops of 
Cretaceous through Cenozoic age along the Atacama Coast 
(Otero et al., 2012; Pyenson et al., 2014).

Australia has had a long northward drift. Dinosaur 
localities of Early Cretaceous Victoria were formed at the 
most southerly paleolatitudes of any known dinosaur sites 
(>70°S; Rich et al., 1988), including those in Antarctica now 
(Jacobs et al., 2011). During the Cretaceous, Australia and 
Antarctica were conjoined. The timing of the final separation 
and deepwater passage between the two continents is 
problematic, but the opening may have been completed as late 
as the Eocene-Oligocene boundary (33.9 Ma) (Lawver et al., 
2011). Few Paleogene localities are known from Australia. 
The Early Eocene site of Tingamarra (54.6 Ma) in Queensland, 
northeastern Australia, is the only terrestrial mammal-bearing 
locality in Australia between the Early Cretaceous and the 
Late Oligocene (Woodhead et al., 2014). Eocene mekosuchine 
crocodylians are also known from localities in Queensland. 
These faunas reflect, albeit in a depauperate way, the fauna of 

Austro-Antarctic Gondwana, from which the endemic fauna 
of Australia was derived (Beck, 2012; Beck et al., 2008; 
Buchanan, 2009).

Australia as a whole is an arid continent, but the point 
currently at 25ºS along Australia’s western coast lay south of 
the arid paleolatitudes until about 10 million years ago, 
predicting mid-Miocene aridification and upwelling. 
Aridification in the Miocene is consistent with sedimentological 
data (Bowler, 1976), particularly with the formation and 
geomorphology of Channel Iron Deposits in western Australia 
(MacPhail and Stone, 2004; Morris and Ramanaidou, 2007), 
with the paleobotanical and floral record (Martin, 2006), and 
with faunal observations (Jacobs et al., 1999; Tedford, 1985; 
Price, 2012). Climate modeling (Herold et al., 2011) shows 
widespread aridity during the Miocene and later. Conflicts 
between modeling and paleontological proxies occur in the 
north at Riversleigh (Travouillon et al., 2009, 2012; Woodhead 
et al., 2014), where monsoon effects are more difficult to 
model, presumably complicated by geography and the Pacific 
to Indian Ocean throughflow.

Australia has no large-scale upwelling system along its 
west coast, as would have been predicted by its latitudinal 
position. Currently at 25ºS the eastern boundary current 
along the west coast is the warm, downwelling Leeuwin 
Current (Cresswell, 1990). In this case, the longshore pressure 
gradient along the continental shelf edge suppresses wind-
driven upwelling (Godfrey and Ridgway, 1985). The presence 
of the Leeuwin Current may be due to the Northwest Monsoon 
and Pacific to Indian Ocean throughflow (Gentilli, 1972; 
Godfrey and Ridgway, 1985). Seasonal variation permits 

Figure 7. Northward drift of Angolan fossil localities, the Dekese core from the Democratic Republic of Congo, and the Orange Forest, a submerged 
forest at the mouth of the Orange River, South Africa. The Cretaceous localities of Iembe and Bentiaba formed in latitudes expected to have 
upwelling and coastal deserts. The Dekese and Samba cores (Cahen et al., 1959, 1960) sampled sediments deposited in the Congo Basin at arid 
subtropical latitudes although they are now in the tropics. The Orange Forest grew in the temperate zone but now lies in the Skeleton Coast. 
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sporadic upwelling in this area (Hanson et al., 2005; Woo et 
al., 2006). Other local upwelling systems are distributed 
along Australia controlled by the orientation of the coast 
relative to seasonal winds.

Conclusions

The geological setting of coastal Angola and its superb 
exposures have allowed Projecto PaleoAngola to examine the 
long record of coastal vertebrates with respect to the opening 
of the South Atlantic and the northward drift of Africa through 
climate zones. From this perspective we were able to compare 
two other post-Gondwanan landmasses that have very different 
paleolatitudinal and therefore paleoclimatic and 
paleoenvironmental histories.

At the time of the breakup of Gondwana, major clades of 
terrestrial vertebrates were already widespread. Dispersing 
continents disrupted contiguous distributions and reduced 
probabilities of faunal interchange until halted by Cenozoic 
continental collisions. The opposite was true for marine 
vertebrates who found new seas to cross.

Evolution is physically driven by changing environments 
caused by any number of factors. However, latitudinal position 
is a first-order determinant of paleoenvironment and therefore 
a driver of evolution on dispersing land masses and of marine 
vertebrates in the context of oceanic conditions responding to 
continental geographies and climatic effects. The 

demonstration of the first-order significance of continental 
position relative to atmospheric cells does not deny the 
importance of other climate drivers and their effects on biota, 
but it should provide a more robust platform for their 
evaluation. The paleontological challenges of studying 
Gondwana continents and their surrounding seas lie in 
improving the stratigraphic density of fossils, understanding 
their associated contexts, and in improving chronology.
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