Ensaios não destrutivos para a inspeção e avaliaçao de edifícios históricos de alvenaria de pedra

Citation:
Ensaios não destrutivos para a inspeção e avaliaçao de edifícios históricos de alvenaria de pedra, Chastre, Carlos, Ludovico-Marques Marco, and Biscaia Hugo , TEST&E 2019 - 2º Congresso de Ensaios e Experimentação em Engenharia Civil, 19-20 February 2, ISEP, Porto, Portugal, p.12, (2019) copy at https://docentes.fct.unl.pt/cmcr/publications/ensaios-nao-destrutivos-para-inspecao-e-avaliacao-de-edificios-historicos-de-alven

Date Presented:

19-20 February 2

Abstract:

Ao longo da sua vida útil os edifícios históricos estão sujeitos a alterações de uso, a agentes ambientais e a diferentes ações como assentamentos do solo, incêndios, inundações ou sismos, para os quais podem não estar preparados. Além disso, a falta de manutenção contínua ajuda a colocar grande parte desse património em risco devido a problemas estruturais que reduzem sua própria segurança e a dos seus utilizadores. A preservação e mitigação de riscos do património cultural construído requer o uso de ferramentas confiáveis, a fim de avaliar o seu estado de conservação e identificar e prevenir potenciais vulnerabilidades. Os testes destrutivos tradicionais não são possíveis de realizar na maioria dos edifícios históricos, por isso é necessário selecionar testes não destrutivos (NDT) que permitam a caracterização física e mecânica dos materiais e do comportamento da estrutura. Neste artigo apresenta-se uma visão geral de diferentes equipamentos e testes NDT que permitem o levantamento geométrico e o mapeamento dos danos do edifício, a análise petrográfica da pedra de alvenaria, a caracterização das propriedades físicas e mecânicas dos materiais e o comportamento estrutural do edifício.

Notes:

REFERÊNCIAS 1. Faria, P. and C. Chastre, Visão Integrada da Reabilitação, in Paredes 2015. Reabilitação e Inovação., P.B. Lourenço, et al., Editors. 2015: Lisboa. p. 1-20.2. ICOMOS, International Charters for Conservation and Restoration = Chartes Internationales sur la Conservation et la Restauration = Cartas Internacionales sobre la Conservación y la Restauración. 2 ed. Monuments & Sites, ed. M. Petzet and J. Ziesemer. Vol. I. 2004, München. 180.3. McCann, D.M. and M.C. Forde, Review of NDT methods in the assessment of concrete and masonry structures. NDT & E International, 2001. 34(2): p. 71-84.4. Heidari, M., et al., Determination of weathering degree of the Persepolis stone under laboratory and natural conditions using fuzzy inference system. Construction and Building Materials, 2017. 145: p. 28-41.5. Heidari, M., et al., Application of fuzzy inference system for determining weathering degree of some monument stones in Iran. Journal of Cultural Heritage, 2017. 25: p. 41-55.6. Menéndez, B., Non-Destructive Techniques Applied to monumental Stone Conservation, in NonDestructive Testing, F. Márquez, M. Papaelias, and N. Zaman, Editors. 2016, InTech. p. 173-213.7. Török, Á., In Situ Methods of Testing Stone Monuments and the Application of Nondestructive Physical Properties Testing in Masonry Diagnosis, in Materials, Technologies and Practice in Historic Heritage Structures, M.B. Dan, R. Přikryl, and Á. Török, Editors. 2010, Springer Netherlands: Dordrecht. p. 177-193.8. Yastikli, N., Documentation of cultural heritage using digital photogrammetry and laser scanning. Journal of Cultural Heritage, 2007. 8(4): p. 423-427.9. Chastre, C., et al., Surveying of Sandstone Monuments: New and Traditional Methodologies to Assess Viability of Conservation Actions, in 40th IAHS Word Congress of Housing. Sustainable Housing Construction. 2014: Funchal, Portugal. p. ID 307 (10p).10. Jones, D.M., 3D Laser Scanning for Heritage. 2011: English Heritage. 18. 11. Chastre, C. and M. Ludovico-Marques, Avaliação dos Portais de Pedra Arenítica da Igreja de São Leonardo Utilizando Testes Não Destrutivos. Mecânica Experimental, 2017. 28(47-54).12. Hinzen, K.-G., S. Schreiber, and S. Rosellen, A high resolution laser scanning model of the Roman theater in Pinara, Turkey – comparison to previous measurements and search for the causes of damage. Journal of Cultural Heritage, 2013. 14(5): p. 424-430.13. Lignola, G.P. and G. Manfredi, A combination of NDT methods for the restoration of monumental façades: The case study of Monte di Pietà (Naples, Italy). Journal of Cultural Heritage, 2010. 11(3): p. 360-364.14. Husnul, H. and A.B. Cahyono, Combined aerial and terrestrial images for complete 3D documentation of Singosari Temple based on Structure from Motion algorithm. IOP Conference Series: Earth and Environmental Science, 2016. 47(1): p. 012004.15. Avdelidis, N.P. and A. Moropoulou, Applications of infrared thermography for the investigation of historic structures. Journal of Cultural Heritage, 2004. 5(1): p. 119-127.16. Faella, G., et al., The Church of the Nativity in Bethlehem: Non-destructive tests for the structural knowledge. Journal of Cultural Heritage, 2012. 13(4): p. e27-e41.17. Vasconcelos, G., et al., Ultrasonic evaluation of the physical and mechanical properties of granites. Ultrasonics, 2008. 48(5): p. 453-466.18. Riveiro, B. and M. Solla, Non-Destructive Techniques for the Evaluation of Structures and Infrastructure. Structures and Infrastructures Series, ed. D.M. Frangopol. Vol. 11. 2016: CRC Press/Balkema. 388.19. Wevers, M., Listening to the sound of materials: Acoustic emission for the analysis of material behaviour. NDT & E International, 1997. 30(2): p. 99-106.20. Pérez-Gracia, V., et al., Geophysics: Fundamentals and Applications in Structures and Infrastructure, in Non-Destructive Techniques for the Evaluation of Structures and Infrastructure. 2016, CRC Press. p. 59-88.21. Pérez-Gracia, V., et al., Non-destructive analysis in cultural heritage buildings: Evaluating the Mallorca cathedral supporting structures. NDT & E International, 2013. 59: p. 40-47.22. Masciotta, M.-G., et al., A multidisciplinary approach to assess the health state of heritage structures: The case study of the Church of Monastery of Jerónimos in Lisbon. Construction and Building Materials, 2016. 116: p. 169-187.23. Moropoulou, A., et al., Diagnostics and protection of Hagia Sophia mosaics. Journal of Cultural Heritage, 2013. 14(3, Supplement): p. e133-e139.24. Cheilakou, E., N. Liarokapi, and M. Koui, NDT characterization of ancient glass objects from the Aegean with an approach of the manufacturing technique, in Emerging Technologies in NonDestructive Testing V. 2012. p. 63.25. Campana, S., Drones in Archaeology. State-of-the-art and Future Perspectives. Archaeological Prospection, 2017.26. Aguilar, R., et al. Geomatics’ procedures and dynamic identification for the structural survey of the church of ‘San Juan Bautista de Huaro’ in Perú. in Brick and Block Masonry: Trends, Innovations and Challenges - Proceedings of the 16th International Brick and Block Masonry Conference, IBMAC 2016. 2016.27. Chastre, C. and M. Ludovico-Marques, Nondestructive testing methodology to assess the conservation of historic stone buildings and monuments, in Handbook of Materials Failure Analysis, A.S.H. Makhlouf and M. Aliofkhazraei, Editors. 2018, Butterworth-Heinemann. p. 255294.28. Yubin, L., et al., Semiautomatic generation of three-view drawing of building using terrestrial laser scanning. IOP Conference Series: Earth and Environmental Science, 2014. 17(1): p. 012230.29. EN12407, Natural stone test methods - Petrographic examination. 2006, CEN: Brussels. 30. Ion, R.M., et al., Effects of the restoration mortar on chalk stone buildings. IOP Conference Series: Materials Science and Engineering, 2016. 133(1): p. 012038.31. Morillas, H., et al., The cauliflower-like black crusts on sandstones: A natural passive sampler to evaluate the surrounding environmental pollution. Environ Res, 2016. 147: p. 218-32.32. Bitossi, G., et al., Spectroscopic Techniques in Cultural Heritage Conservation: A Survey. Applied Spectroscopy Reviews, 2005. 40(3): p. 187-228.33. Janssens, K. and R. Van Grieken, Non-destructive Micro Analysis of Cultural Heritage Materials. Comprehensive Analytical Chemistry. Vol. XLII. 2004: Elsevier Science. 800.34. Senesi, G.S., et al., Laser cleaning and laser-induced breakdown spectroscopy applied in removing and characterizing black crusts from limestones of Castello Svevo, Bari, Italy: A case study. Microchemical Journal, 2016. 124: p. 296-305.35. Zorov, N.B., et al., Qualitative and quantitative analysis of environmental samples by laserinduced breakdown spectrometry. Russian Chemical Reviews, 2015. 84(10): p. 1021.36. Vandevoorde, D., et al., Validation of in situ Applicable Measuring Techniques for Analysis of the Water Adsorption by Stone. Procedia Chemistry, 2013. 8: p. 317-327.37. Miloš, D. and S. Zuzana, Enhanced affordable methods for assessing material characteristics and consolidation effects on stone and mortar. Journal of Geophysics and Engineering, 2013. 10(6): p. 064005.38. Svahn, H., Non-Destructive Field Tests in Stone Conservation: Final Report for the Research and Development Project: Literature Study. 2006: Riksantikvarieämbetet.39. Menezes, A., M. Glória Gomes, and I. Flores-Colen, In-situ assessment of physical performance and degradation analysis of rendering walls. Construction and Building Materials, 2015. 75: p. 283-292.40. Paoletti, D., et al., Preventive thermographic diagnosis of historical buildings for consolidation. Journal of Cultural Heritage, 2013. 14(2): p. 116-121.41. Paipetis, A.S., et al., Emerging Technologies in Non-Destructive Testing V. 2012: CRC Press, Taylor & Francis Group. 507.42. Brown, S. and M. Smith, A transient-flow syringe air permeameter. Geophysics, 2013. 78(5): p. D307-D313.43. Iversen, B.V., et al., Field Application of a Portable Air Permeameter to Characterize Spatial Variability in Air and Water Permeability. Vadose Zone Journal, 2003. 2(4): p. 618-626.44. Jensen, J.L., C.A. Glasbey, and P.W.M. Corbett, On the interaction of geology, measurement, and statistical analysis of small-scale permeability measurements. Terra Nova, 1994. 6(4): p. 397403.45. Filomena, C.M., J. Hornung, and H. Stollhofen, Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices. Solid Earth, 2014. 5(1): p. 1-11.46. Katz, A.J. and A.H. Thompson, Quantitative prediction of permeability in porous rock. Physical Review B, 1986. 34(11): p. 8179-8181.47. Rossi, P.P. and C. Rossi, Surveillance and monitoring of ancient structures: recent developments, in Structural Analysis of Historical Constructions II, P. Roca, et al., Editors. 1998: Barcelona, Spain. p. 163-178.48. Enckell, M., et al., New and Emerging Technologies in Structural Health Monitoring, in Handbook of Measurement in Science and Engineering. 2012, John Wiley & Sons, Inc.49. Glisic, B. and D. Inaudi, Fibre optic methods for structural health monitoring. 2008, John Wiley & Sons.50. Borrelli, E. and A. Urland, ARC Laboratory handbook: porosity, salts, binders, colour. Conservation of architectural heritage, historic structures and materials. 1999, Rome: ICCROM, International Centre for the Study of the Preservation and Restoration of Cultural Property.51. Bläuer Böhm, C., Quantitative Salt Analysis in Conservation of Buildings / Quantitative Salzanalyse bei der Konservierung von Bauwerken. Restoration of Buildings and Monuments, 2005. 11(6): p. 409.52. Ludovico-Marques, M., et al., Methodology used to carry out a fast identification of soluble salts in efflorescences of old mortars (in Portuguese), in Seminary of soluble salts in old mortars. 2005: LNEC, Lisbon. p. 21.1-21.9.53. Ludovico-Marques, M., Contribuição para o conhecimento do efeito de cristalização de sais na alterabilidade de arenitos. Aplicação ao património edificado de Atouguia da Baleia, in Departamento de Engenharia Civil da Faculdade de Ciências e Tecnologia. 2008, Universidade NOVA de Lisboa: Caparica.54. EN1936, Natural stone test methods - Determination of real density and apparent density, and of total and open porosity. 2006, CEN: Brussels.55. Siegesmund, S. and R. Snethlage, Stone in architecture: properties, durability. 2011: Springer. 56. Ludovico-Marques, M. and C. Chastre, Effect of consolidation treatments on mechanical behaviour of sandstone. Construction and Building Materials, 2014. 70(15 November 2014): p. 473-482.57. Ludovico-Marques, M. and C. Chastre, Effect of salt crystallization ageing on the compressive behavior of sandstone blocks in historical buildings. Engineering Failure Analysis, 2012. 26: p. 247-257.58. Ludovico-Marques, M., C. Chastre, and G. Vasconcelos, Modelling the compressive mechanical behaviour of granite and sandstone historical building stones. Construction and Building Materials, 2012. 28(1): p. 372-381.59. Anselmetti, F.S., S. Luthi, and G.P. Eberli, Quantitative characterization of carbonate pore systems by digital image analysis. AAPG bulletin, 1998. 82(10): p. 1815-1836.60. da Porto, F., et al., Analysis and repair of clustered buildings: Case study of a block in the historic city centre of L’Aquila (Central Italy). Construction and Building Materials, 2013. 38: p. 12211237.61. Snethlage, R. and K. Sterflinger, Stone Conservation, in Stone in Architecture: Properties, Durability, S. Siegesmund and R. Snethlage, Editors. 2011, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 411-544.62. Birginie, J.M. and T. Rivas, Use of a laser camera scanner to highlight the surface degradation of stone samples subjected to artificial weathering. Building and Environment, 2005. 40(6): p. 755764.63. Carmen, V.-C., et al., The measurement of surface roughness to determine the suitability of different methods for stone cleaning. Journal of Geophysics and Engineering, 2012. 9(4): p. S108.64. Vasanelli, E., et al., Combining non-invasive techniques for reliable prediction of soft stone strength in historic masonries. Construction and Building Materials, 2017. 146: p. 744-754.65. Viles, H., et al., The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: a comparative analysis. Earth Surface Processes and Landforms, 2011. 36(3): p. 320-333.66. Coombes, M.A., et al., A non-destructive tool for detecting changes in the hardness of engineering materials: Application of the Equotip durometer in the coastal zone. Engineering Geology, 2013. 167: p. 14-19.67. Ferreira Pinto, A.P. and J. Delgado Rodrigues, Consolidation of carbonate stones: Influence of treatment procedures on the strengthening action of consolidants. Journal of Cultural Heritage, 2012. 13(2): p. 154-166.68. Green, P., Color Management. Understanding and Using ICC Profiles. The Wiley-IS&T Series in Imaging Science and Technology, ed. M. Kriss. 2010: John Wiley & Sons, Ltd.69. Fairchild, M.D., Color Appearance Models. 3 ed. The Wiley-IS&T Series in Imaging Science and Technology. 2013: John Wiley & Sons, Ltd.70. Shevell, S.K., The Science of Color. 2 ed. 2003: Elsevier. 71. Siegesmund, S. and H. Dürrast, Physical and Mechanical Properties of Rocks, in Stone in Architecture: Properties, Durability, S. Siegesmund and R. Snethlage, Editors. 2011, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 97-225.72. Munsell, A.H., Atlas of the Munsell Color System. 1915, Boston: Malden, Mass., Wadsworth, Howland & Co., inc., Printers.73. Shalabi, F.I., E.J. Cording, and O.H. Al-Hattamleh, Estimation of rock engineering properties using hardness tests. Engineering Geology, 2007. 90(3): p. 138-147.74. Ludovico-Marques, M. and C. Chastre, Conservation of sandstone monuments: a new approach in consolidation treatments, in 40th IAHS Word Congress of Housing. Sustainable Housing Construction. 2014: Funchal, Portugal. p. ID 211 (10p).75. Ludovico-Marques, M. and C. Chastre, Durability Assessment of Consolidation Effect on Sandstone Monuments, in 41th IAHS World Congress of Housing. Sustainability and Innovation for the Future. 2016: Albufeira, Portugal. p. 10p.76. Martínez-Molina, W., et al., Predicting concrete compressive strength and modulus of rupture using different NDT techniques. Advances in Materials Science and Engineering, 2014. 2014.77. Martínez, I., et al., Physico-chemical material characterization of historic unreinforced masonry buildings: The first step for a suitable intervention. Construction and Building Materials, 2013. 40: p. 352-360.78. Botas, S., R. Veiga, and A. Velosa, Air lime mortars for conservation of historic tiles: Bond strength of new mortars to old tiles. Construction and Building Materials, 2017. 145: p. 426-434.79. Miccoli, L., U. Müller, and P. Fontana, Mechanical behaviour of earthen materials: A comparison between earth block masonry, rammed earth and cob. Construction and Building Materials, 2014. 61: p. 327-339.80. RILEM, Test method recommendations of RILEM TC 177-MDT 'Masonry durability and on-site testing' - D.5: In-situ stress - strain behaviour tests based on the flat jack. Materials and Structures, 2004. 37(271): p. 497 - 501.81. RILEM, Test method recommendations of RILEM TC 177-MDT 'Masonry durability and on-site testing' - D.4: In-situ stress tests based on the flat jack. Materials and Structures, 2004. 37(271): p. 491 - 496.82. EN14146, Natural stone test methods - Determination of the dynamic modulus of elasticity (by measuring the fundamental resonance frequency). 2006, CEN: Brussels.83. Pinho, F.F.S., Paredes de alvenaria ordinária: estudo experimental com modelos simples e reforçados, in Ph.D thesis. 2007, Universidade NOVA de Lisboa. p. 699. (in Portuguese).84. Binda, L., A. Saisi, and C. Tiraboschi, Investigation procedures for the diagnosis of historic masonries. Construction and Building Materials, 2000. 14(4): p. 199-233.85. Glisic, B., et al. Monitoring of heritage structures and historical monuments using long-gage fiber optic interferometric sensors–an overview. in Proceedings of the 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure-SHMII-3, Vancouver, BC, Canada. 2007.86. Ohtsu, M., Innovative AE and NDT Techniques for On-Site Measurement of Concrete and Masonry Structures. RILEM State-of-the-Art Reports. Vol. 20. 2016: Springer.87. Almeida, G., et al., In-Plane Displacement and Strain Image Analysis. Computer-Aided Civil and Infrastructure Engineering, 2016. 31(4): p. 292-304.88. Busse, G., et al., Emerging Technologies in Non-Destructive Testing. 2008: Taylor & Francis/Balkema. 366.89. Colla, C. and E. Gabrielli, Photoelasticity and DIC as optical techniques for monitoring masonry specimens under mechanical loads. Journal of Physics: Conference Series, 2017. 778(1): p. 012003.90. Miranda, L.F., et al., Sonic Impact Method – A new technique for characterization of stone masonry walls. Construction and Building Materials, 2012. 36: p. 27-35.91. Carvalho, C.R., Seismic vulnerability analysis of the Rua Augusta Arch in MSc. Thesis. 2015, Universidade NOVA de Lisboa. p. 128. (in Portuguese).92. RILEM-TC25-PEM, Essais recommandés pour mesurer l'altération des pierres et évaluer l'efficacité des méthodes de traitement / Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Materials and Structures, 1980. 13(75): p. 175 253.93. Kashif Ur Rehman, S., et al., Nondestructive test methods for concrete bridges: A review. Construction and Building Materials, 2016. 107: p. 58-86.94. Mario, M., et al., Comparison of natural and artificial forcing to study the dynamic behaviour of bell towers in low wind context by means of ground-based radar interferometry: the case of the Leaning Tower in Pisa. Journal of Geophysics and Engineering, 2014. 11(5): p. 055004.95. Stabile, T.A., et al., A new joint application of non-invasive remote sensing techniques for structural health monitoring. Journal of Geophysics and Engineering, 2012. 9(4): p. S53.96. Lourenço, P., et al., Reducing the seismic vulnerability of cultural heritage buildings. 2006: Universidade do Minho.97. Biscaia, H., et al., Flexural Strengthening of Old Timber Floors with Laminated Carbon Fiber Reinforced Polymers. Journal of Composites for Construction, 2017. 21(1): p. 04016073.98. Moropoulou, A., et al., Non-destructive techniques as a tool for the protection of built cultural heritage. Construction and Building Materials, 2013. 48: p. 1222-1239.