Coauthored Publications with: Bras

Conference Proceedings

Gião, R, Lúcio V, Chastre C, Bras A.  2012.  UFRG – Unidirectional fibre reinforced grout as strengthening material for reinforced concrete structures. BEFIB2012 – Fibre reinforced concrete. , Guimarães: UMinho Abstractgiao2012vlchbr.pdf

The present study is part of an extensive research project, where the main objective is to evaluate a strengthening solution for reinforced concrete structures using a small thickness jacketing in the compression side of the RC element with unidirectional fiber reinforced grout - UFRG.
For this purpose a high performance cementitious grout reinforced with continuous and unidirectional non woven fibermat has been developed. It was expected that the use of these type of fibers allowed an optimization of its percentage and orientation. It was expected that the use of these type of fibers allowed an optimization of its percentage and orientation. Besides, for continuous fibers (with an aspect ratio, defined as the length-to-diameter ratio, l/d=∞), the composite should attain higher tensile strength since the fiber embedment length is enough to prevent fiber pullout.
The experimental campaign included a set of preliminary tests that allowed the design of the fiber reinforced grout, sustained with rheological parameters [7] and mechanical characterization tests of the materials.
Finally, an experimental campaign was carried out in order to proceed to the mechanical characterization of the unidirectional fiber reinforced grout. Compressive tests were conducted in small thickness tubular specimens that enable the determination of the compressive strength and the static modulus of elasticity of the material. The tensile strength of the material was obtained using splitting tests of cubic specimens (according the standard DIN 1048-5). The experimental results are presented and analyzed.

Journal Article

Faustino, P, Chastre C, Nunes Â, Brás A.  2016.  Lifetime modelling of chloride induced corrosion in reinforced concrete structures with concrete with portland and blended cements, 2016. Structure and Infrastructure Engineering. 12:1013-1023., Number 9 AbstractWebsite

This article discusses mathematical modelling of the long-term performance of concrete with different supplementary cementitious materials in a maritime environment. The research was carried out in the light of the national Portuguese application of the CEN standards with mandatory requirements for a performance-based design approach. Laboratory investigations were performed on concrete compositions based on CEM I and CEM II/B-L in which the cement was partially replaced by either 0% (reference composition) or 50% of low calcium fly ash (FA). Concrete compositions were made with the objective to achieve service lives of 50 and 100 years with regard to steel corrosion. Test results of compressive strength, chloride potential diffusion and electrical resistivity are reported for different curing ages of 28, 90, 180 and 365 days. Chloride diffusion results were used for the implementation of modelling equations in order to estimate the design lifetime regarding reinforcing steel corrosion. A performance-based approach using a probabilistic method was carried out and the results obtained are compared with the requirements according to the Portuguese prescriptive approach. The modelling results show that FA blended compositions have better performance compared to those with Portland cements, especially if curing ages beyond 28 days are considered.

Bras, A, Gião R, Lúcio V, Chastre C.  2013.  Development of an injectable grout for concrete repair and strengthening. Cement and Concrete Composites. AbstractWebsite

This paper deals with the coupled effect of temperature and silica fume addition on rheological, mechanical behaviour and porosity of grouts based on CEMI 42.5R, proportioned with a polycarboxylate-based high range water reducer. Preliminary tests were conducted to focus on the grout best able to fill a fibrous network since the goal of this study was to develop an optimized grout able to be injected in a mat of steel fibers for concrete strengthening. The grout composition was developed based on criteria for fresh state and hardened state properties. For a CEMI 42.5R based grout different high range water reducer dosages (0, 0.2%, 0.4%, 0.5%, 0.7%) and silica fume (SF) dosages (0, 2%, 4%) were tested (as replacement of cement by mass). Rheological measurements were used to investigate the effect of polycarboxylates (PCE) and SF dosage on grout properties, particularly its workability loss, as the mix was to be injected in a matrix of steel fibers for concrete jacketing. The workability behaviour was characterized by the rheological parameters yield stress and plastic viscosity (for different grout temperatures and resting times), as well as the procedures of mini slump cone and funnel flow time. Then, further development focused only on the best grout compositions. The cement substitution by 2% of SF exhibited the best overall behaviour and was considered as the most promising compared to the others compositions tested. Concerning the fresh state analysis, a significant workability loss was detected if grout temperature increased above 35°C. Below this temperature the grout presented a self-levelling behaviour and a life time equal to 45 minutes. In the hardened state, silica fumes increased not only the grout’s porosity but also the grout’s compressive strength at later ages, since the pozzolanic contribution to the compressive strength does not occur until 28 days and beyond.