Cabrita, A., Pereira Brida Silva Ferreira Fortunato Martins L. D. V. "
Role of the density of states in the colour selection of the collection spectrum of amorphous silicon-based Schottky photodiodes."
Key Engineering Materials. 230-232 (2002): 559-562.
AbstractThis work deals with the study of the role of intra-gap density of states on the colour selection of the collection spectrum of glass/ITO/a-Six:C1-x:H/Al Schottky photodiodes. In order to optimise the voltage colour selection and to study the influence of intragap density of states in the final device performances, different undoped a-Six:C1-x:H films (1 μm thick) have been produced in a conventional Plasma Enhanced Chemical Vapour Deposition (PECVD) system using silane and a controlled mixtures of silane and methane as gas sources. The properties of the films were analysed by dark conductivity measurements, infrared spectroscopy, visible spectroscopy and constant photocurrent method (CPM), to determine the valence controllability and to correlate the silicon carbide layer composition with the performances of the devices. The performances obtained concerning the spectral response of the devices were correlated with the carbon content and the density of states of the a-Six:C1-x:H films.
Carvalho, J., Ferreira Fernandes Fidalgo Martins I. B. J. "
Nd-YAG laser induced crystallization on a-Si:H thin films."
Materials Research Society Symposium - Proceedings. Vol. 358. 1995. 915-920.
AbstractIn this paper we present results concerning the influence of laser energy and shot density on the electrical resistance, X-ray diffraction pattern, and structure obtained by SEM, on recrystallized a-Si:H thin films produced by using a Nd-YAG laser, working in a wavelength of 532 nm. The base material (undoped and doped a-Si:H) was obtained by Plasma Enhanced Chemical Vapour Deposition (PECVD). The structure and electrical characteristics of the recrystallized thin films are dependent on the laser beam energy density, beam spot size and the number of shots applied to the base a-Si:H thin film used. Overall, the data show recrystallized material with grain sizes larger than 1μm, where the electrical resistance of both, undoped and doped materials, can be varied up to 5 orders of magnitude, by the proper choice of the recrystallization conditions.
Contreras, J.a, Tornero Ferreira Martins Gomes Fortunato J. a I. b. "
Simulated and real sheet-of-light 3D object scanning using a-Si: H thin film PSD arrays."
Sensors (Switzerland). 15 (2015): 29938-29949.
AbstractAMATLAB/SIMULINK software simulation model (structure and component blocks) has been constructed in order to view and analyze the potential of the PSD (Position Sensitive Detector) array concept technology before it is further expanded or developed. This simulation allows changing most of its parameters, such as the number of elements in the PSD array, the direction of vision, the viewing/scanning angle, the object rotation, translation, sample/scan/simulation time, etc. In addition, results show for the first time the possibility of scanning an object in 3D when using an a-Si:H thin film 128 PSD array sensor and hardware/software system. Moreover, this sensor technology is able to perform these scans and render 3D objects at high speeds and high resolutions when using a sheet-of-light laser within a triangulation platform. As shown by the simulation, a substantial enhancement in 3D object profile image quality and realism can be achieved by increasing the number of elements of the PSD array sensor as well as by achieving an optimal position response from the sensor since clearly the definition of the 3D object profile depends on the correct and accurate position response of each detector as well as on the size of the PSD array. © 2015 by the authors; licensee MDPI, Basel, Switzerland.
Correia, A.a b, Martins Fortunato Barquinha Goes R. a E. a. "
Design of a robust general-purpose low-offset comparator based on IGZO thin-film transistors."
Proceedings - IEEE International Symposium on Circuits and Systems. Vol. 2015-July. 2015. 261-264.
AbstractThis paper presents a low-offset comparator based on n-type amorphous indium gallium zinc oxide thin-film transistors (TFTs). An a-Si:H TFT model was adapted to fit the electrical characterization data obtained for these devices. The proposed comparator comprises three pre-amplification stages, a positive-feedback analog latch and a fully dynamic digital latch. Simulation results show that the proposed circuit can work at several tens of kHz, with an accuracy of the order of 10 mV, considering a supply voltage of 10 V and a current consumption of 380 μA. Monte-Carlo simulations exhibit a 1-sigma random offset voltage smaller than 10 mV and 40 mV, respectively, with and without using autozeroing techniques. © 2015 IEEE.