Alendouro, M.S.J.G.a, Monteiro Figueiredo Martins Silva Ferro Fernandas R. C. C. a. "
Microstructural characterization and properties of a glass and a glassceramic made from municipal incinerator bottom ash."
Materials Science Forum. 455-456 (2004): 827-830.
AbstractA glass was made using bottom ash produced by a Portuguese municipal solid waste (MSW) incinerator. The bottom ash was the single batch material used in the formation of the glass, which was obtained through a conventional melt-quenching method. The glass was then converted to glass-ceramic for further recycling to construction materials. After submitting the glass samples to several heat treatments, between 820 and 1050°C and during different times, it was verified that the optimum heat treatment schedule for the ceramization of the glass was at 1000°C for 10h, as confirmed by microstructural observation and by X-ray diffraction. The major crystalline phases precipitated in the glass-ceramic were wollastonite (CaSiO3) and diopside (Ca(Mg,Al)(Si,Al)2O6). Microstructural analysis of the glass-ceramic revealed that the crystalline phases were present as dendrites and fiber-like structures that were homogeneously distributed in the material. The glassceramic showed good mechanical properties with a hardness of 5.6 MPa and a bending strength of 101 MPa. This material had a density of 2.8 gcm-3 and a thermal expansion coefficient of 9.10-6°C-1. The glass and the glass-ceramic showed an excellent chemical stability against leaching in acidic solution and in alkaline solution. In summary, both the glass and the glass-ceramic have good chemical and mechanical properties and can, therefore, be applied as construction materials.
Alendouro, M. S. J. G. a, R. C. C. a Monteiro, C. F. M. L. a Figueiredo, R. M. S. a Martins, R. J. C. a Silva, M. C. b Ferro, and M. H. V. b Fernandas. "
Microstructural characterization and properties of a glass and a glassceramic made from municipal incinerator bottom ash."
Materials Science Forum. 455-456 (2004): 827-830.
AbstractA glass was made using bottom ash produced by a Portuguese municipal solid waste (MSW) incinerator. The bottom ash was the single batch material used in the formation of the glass, which was obtained through a conventional melt-quenching method. The glass was then converted to glass-ceramic for further recycling to construction materials. After submitting the glass samples to several heat treatments, between 820 and 1050°C and during different times, it was verified that the optimum heat treatment schedule for the ceramization of the glass was at 1000°C for 10h, as confirmed by microstructural observation and by X-ray diffraction. The major crystalline phases precipitated in the glass-ceramic were wollastonite (CaSiO3) and diopside (Ca(Mg,Al)(Si,Al)2O6). Microstructural analysis of the glass-ceramic revealed that the crystalline phases were present as dendrites and fiber-like structures that were homogeneously distributed in the material. The glassceramic showed good mechanical properties with a hardness of 5.6 MPa and a bending strength of 101 MPa. This material had a density of 2.8 gcm-3 and a thermal expansion coefficient of 9.10-6°C-1. The glass and the glass-ceramic showed an excellent chemical stability against leaching in acidic solution and in alkaline solution. In summary, both the glass and the glass-ceramic have good chemical and mechanical properties and can, therefore, be applied as construction materials.
Águas, H.a, Raniero Pereira Viana Fortunato Martins L. a L. a. "
Role of the rf frequency on the structure and composition of polymorphous silicon films."
Journal of Non-Crystalline Solids. 338-340 (2004): 183-187.
AbstractIn this work we present results of structural composition and morphological characteristics of polymorphous silicon (pm-Si:H) films deposited by PECVD at 13.56 and 27.12 MHz. In addition, the role of the excitation frequency on the growth rate will be also analyzed. The results show that by using the 27.12 MHz excitation frequency the hydrogen dilution in the plasma needed to produce pm-Si:H can be reduced by more than 50% as well as the rf power density, leading to an increase on the growth rate to values higher than 3 Å/s. Spectroscopic ellipsometry and Raman spectroscopy show that the 27.12 MHz pm-Si:H films are more ordered than the pm-Si:H films produced at 13.56 MHz, while the infrared spectroscopy show that the SiH2 concentration in the films is strongly reduced. AFM measurements reveal that the films produced at 27.12 MHz films are more structured, presenting also higher roughness. © 2004 Elsevier B.V. All rights reserved.