Publications

Export 49 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
P
Fernandes, A. E., Mateus O., Bauluz B., Coimbra R., Ezquerro L., Núñez-Lahuerta C., Suteu C., & Moreno-Azanza M. (2021).  The Paimogo Dinosaur Egg Clutch Revisited: Using One of Portugal’s Most Notable Fossils to Exhibit the Scientific Method. Geoheritage. 13(3), 66., 2021 Abstractfernandes_et_al-2021-geoheritage.pdfWebsite

Found in the Upper Jurassic outcrops of Lourinhã, Portugal, and first published in 1997, the Paimogo dinosaur egg clutch is one of Portugal’s most remarkable fossils, with over one hundred eggs preserved in association with embryonic bones, of the allosauroid theropod Lourinhanosaurus. However, many questions about it have remained unanswered, even until the present day. After its discovery, this extraordinary fossil became the keystone of a small local museum, greatly kick-starting regional tourism, while also holding the fossils in trust for future generations to study. More than 20 years later, continually sustained paleontological interest from the public has even given rise to both a highly successful dinosaur theme park in the region and an aspiring UNESCO Geopark. Recently, a multidisciplinary team of preparators, paleontologists, sedimentologists, mineralogists, and geochemists revisited an unopened jacket from the original excavation using an array of techniques to address various questions. Studies are ongoing, but the corpus of information obtained and the methodologies utilized to gather data have offered an opportunity to design an exhibit around the history of the Paimogo clutch, highlighting the scientific methods involved, and asserting the importance of preserving geological heritage for the future, when new tools will doubtlessly become available to provide yet another new look at old fossils. Here, we describe our analytical procedures and present an innovative exhibit designed to introduce to the public the latest advances on the research behind an iconic piece of Portuguese geoheritage, increasing its value both as a research item and as an educational resource.

Guillaume, A. R. D., Moreno-Azanza M., Puértolas-Pascual E., & Mateus O. (2020).  Palaeobiodiversity of crocodylomorphs from the Lourinhã Formation based on the tooth record: insights into the palaeoecology of the Late Jurassic of Portugal. Zoological Journal of the Linnean Society. 189(2), 549–583., 11 Abstractguillaume_et_al_palaeobiodiversity_of_crocodylomorphs_from_the.pdfWebsite

{Crocodylomorphs were a diverse clade in the Late Jurassic of Portugal, with six taxa reported to date. Here we describe 126 isolated teeth recovered by screen-washing of sediments from Valmitão (Lourinhã, Portugal, late Kimmeridgian–Tithonian), a vertebrate microfossil assemblage in which at least five distinct crocodylomorph taxa are represented. Ten morphotypes are described and attributed to five clades (Lusitanisuchus, Atoposauridae, Goniopholididae, Bernissartiidae and an undetermined mesoeucrocodylian). Four different ecomorphotypes are here proposed according to ecological niches and feeding behaviours: these correspond to a diet based on arthropods and small vertebrates (Lusitanisuchus and Atoposauridae), a generalist diet (Goniopholididae), a durophagous diet (Bernissartiidae) and a carnivorous diet. Lusitanisuchus mitracostatus material from Guimarota is here redescribed to achieve a better illustration and comparison with the new material.This assemblage shares similar ecomorphotypes with other Mesozoic west-central European localities, where a diversity of crocodylomorphs lived together, avoiding direct ecological competition through niche partitioning. The absence of large marine crocodylomorphs, present in other contemporaneous assemblages, is here interpreted as evidence that the Valmitão assemblage was deposited in a freshwater environment, although sample bias cannot be completely ruled out. These affinities are further supported by the presence of lanceolate and leaf-shaped teeth associated with continental clades.}

Myers, T. S., Tabor N. J., Jacobs L. L., & Mateus O. (2012).  Palaeoclimate of the Late Jurassic of Portugal: Comparison with the Western United States. Sedimentology. 59(6), 1695–1717., 2012//01/ Abstractmyers_et_al_2012_palaeoclimate_of_the_late_jurassic_of_portugal_comparison_with_the_western.pdfWebsite

Investigation of the palaeoclimatic conditions associated with Upper Jurassic strata in Portugal and comparison with published palaeoclimate reconstructions of the Upper Jurassic Morrison Formation in western North America provide important insights into the conditions that allowed two of the richest terrestrial faunas of this period to flourish. Geochemical analyses and observations of palaeosol morphology in the informally named Upper Jurassic Lourinhã formation of western Portugal indicate warm and wet palaeoclimatic conditions with strongly seasonal precipitation patterns. Palaeosol profiles are dominated by carbonate accumulations and abundant shrink-swell (vertic) features that are both indicative of seasonal variation in moisture availability. The δ18OSMOW and δDSMOW values of phyllosilicates sampled from palaeosol profiles range from +22·4‰ to +22·7‰ and −53·0‰ to −37·3‰, respectively. These isotope values correspond to temperatures of formation between 32°C and 39°C ± 3°, with an average of 36°C, which suggest surface temperatures between 27°C and 34°C (average 31°C). On average, these surface temperature estimates are 1°C higher than the highest summer temperatures modelled for Late Jurassic Iberia using general circulation models. Elemental analysis of matrix material from palaeosol B-horizons provides proxy (chemical index of alteration minus potassium) estimates of mean annual precipitation ranging from 766 to 1394 mm/year, with an average of approximately 1100 mm/year. Palaeoclimatic conditions during deposition of the Lourinhã formation are broadly similar to those inferred for the Morrison Formation, except somewhat wetter. Seasonal variation in moisture availability does not seem to have negatively impacted the ability of these environments to support rich and relatively abundant faunas. The similar climate between these two Late Jurassic terrestrial ecosystems is probably one of the factors which explains the similarity of their vertebrate faunas.

Myers, T. S., Tabor N. J., Jacobs L. L., & Mateus O. (2012).  Palaeoclimate of the late jurassic of portugal: Comparison with the western united states. Sedimentology. 59, 1695-1717., Number 6 Abstract
n/a
Mateus, O., & Castanhinha R. (2008).  PaleoAngola- Predadores de um oceano primitivo. National Geographic Portugal. 8, 26-33., Number 91 Abstract
n/a
Mateus, O., & Castanhinha R. (2008).  PaleoAngola- Predadores de um oceano primitivo. National Geographic Portugal. 8, 26–33., Number 91 Abstract
n/a
Estraviz Lopez, D., & Mateus O. (2018).  Paleobiodiversity of Quaternary fossil tetrapods in continental Portugal. 1st Palaeontological Virtual Congress. online. Abstractestraviz-lopez-mateus_palaeovc2018_abstract.pdf

n/a

Mateus, O. (2010).  Paleontological collections of the Museum of Lourinhã (Portugal). (Brandao, JM, Callapez, PM, O. Mateus, Castro, P, Ed.).Colecções e museus de Geologia: missão e gestão. 121-126., Jan: Ed. Universidade de Coimbra e Centro de Estudos e Filosofia da História da Ciência Coimbra Abstractmateus_2010_paleontological_collections_of_the_museum_of_lourinha__geocoleccoes_omateus.pdf

Abstract: The paleontological collections of the Museum of Lourinhã, in Portugal, has a rich paleontological collection, particularly of Late Jurassic dinosaurs of the Lourinhã Formation (Kimmeridgian-Tithonian). Most salient highlights comprehend the following dinosaur holotype specimens: stegosaur Miragaia longicollum, theropod Lourinhanosaurus antunesi, sauropod Dinheirosaurus lourinhanensis, ornithopod Draconyx loureiroi, theropod Allosaurus europaeus, and, a mammal, Kuehneodon hahni. Other dinosaur specimens are referred including the nest and eggs and embryos of Lourinhanosaurus. Portugal is very productive in Late Jurassic vertebrates, being the seventh country bearing more dinosaur taxa.

Mateus, O. (2010).  Paleontological collections of the Museum of Lourinhã (Portugal). (Brandao, JM, Callapez, PM, O. Mateus, Castro, P, Ed.).Colecções e museus de Geologia: missão e gestão. 121–126., 1: Ed. Universidade de Coimbra e Centro de Estudos e Filosofia da História da Ciência Coimbra Abstract
n/a
Mateus, O. (2010).  Paleontological collections of the Museum of Lourinhã (Portugal). (JM Brandão, Callapez, PM, O. Mateus, Castro, P, Ed.).Colecções e museus de Geologia: missão e gestão. 121–126., 1: Ed. Universidade de Coimbra e Centro de Estudos de História e Filosofia da Ciência Abstract
n/a
Mateus, O., & Azinheira C. (1996).  Passeriformes nidificantes da Ribeira da Viscossa (Évora). (Spea, Ed.).Livro de resumos do I Congresso de Ornitologia. Abstract
n/a
Ceríaco, L. M. P., Gutiérrez E. E., Dubois A., Abdala C. S., Alqarni A. S., Adler K., et al. (2016).  Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences. Zootaxa. 4196(3), 435 - 445., 2016 AbstractWebsite
n/a
Ceríaco, L. M. P., Gutiérrez E. E., Dubois A., Abdala C. S., Alqarni A. S., Adler K., et al. (2016).  Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences. Zootaxa. 4196, 435-445., Number 3 Abstract
n/a
Jacobs, L., Polcyn M., Araújo R., Strganac C., & Mateus O. (2010).  Physical drivers of evolution and the history of the marine tetrapod fauna of Angola. Annual Meeting of the Society of Vertebrate Paleontology. 110A., Jan Abstractjacobs_et_al_mateus_2010_physical_drivers_marine_tetrapod_fauna_of_angola_svp10abstracts.pdf

n/a

Mateus, O. (2010).  Physical drivers of evolution and the history of the marine tetrapod fauna of Angola. –, , 1 Abstract

Modern marine species populations are often evaluated in terms of bottom-up, resource limited structure, or top-down, predator controlled structure. In a larger timeframe, investiga- tion of physical drivers in marine tetrapod evolution relies on the recognition of patterns and the correlation in timing of physical events with biotic change. However, it has been dem- onstrated through the study of fossil cetaceans that a broader deep-time perspective within a top-down or bottom-up framework is informative. Here we examine the fossil record of &UHWDFHRXV PDULQH WHWUDSRGV LQ $QJROD WR GLVFHUQ SDWWHUQV WKDW PD\ UHÀHFW SK\VLFDO GULYHUV RI evolution, and that are also relevant to population structure. In modern marine ecosystems, GLVWULEXWLRQ SDWWHUQV UHÀHFWLQJ SULPDU\ SURGXFWLYLW\ DUH LQGLFDWLYH RI ERWWRP?XS FRQWURO? ,Q the fossil record, productivity-controlled distribution patterns can also be perceived. Physi- cal parameters resulting in environmental stability, sea-level change, oceanic anoxic events, paleoclimate, and paleogeography are examined in comparison with taxonomic diversity and life history patterns. Mosasaurs originated during a time of high global temperatures and shallow temperature gradients. As upper-trophic-level species of modest size and plesiopedal limb structure (capable of terrestrial locomotion), early mosasaurs were subject to both top- down and bottom up pressures. The attainment of larger size coupled with emigration and biogeographic distribution in areas of high primary productivity, and niche differentiation VKRZQ E\ 13C values, indicate bottom-up pressures. Productivity along the African coast since the formation of the Atlantic Ocean facilitated the co-occurrence of diverse marine tetrapods through time, and has culminated today in the Benguela large marine ecosystem. Just as the current Benguela ecosystem has tetrapod species populations dominated by both bottom-up (cetaceans) and top-down strategies (sea birds and pinnipeds), so too did the Cre- taceous community, with mosasaurs and plesiosaurs having predominantly bottom-up popu- lation structure, while sea turtles and pterosaurs were more subject to top-down pressures.

Polcyn, M. J., Jacobs L. L., Ara´ujo R., Schulp A. S., & Mateus O. (2014).  Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology, Palaeoecology. 400, 17-27. Abstractpolcyn_et_al_2014_physical_drivers_mosasaurs.pdf

Mosasaurs are marine squamates with a 32.5 million-year history from their appearance at 98 Ma to their extinction at the K-Pg boundary (65.5 Ma). Using a database of 43 generic and 94 species-level taxa, we compare the taxonomic diversity and patterns of morphological disparity in mosasaurs with sea level, sea surface temperature, and stable carbon isotope curves for the Upper Cretaceous to explore factors that may have influenced their evolution. No single factor unambiguously accounts for all radiations, diversification, and extinctions; however, the broader patterns of taxonomic diversification and
morphological disparity point to niche differentiation in a “fishing up” scenario under the influence of “bottom-up” selective pressures. The most likely driving force in mosasaur evolution was high productivity in the Late Cretaceous, driven by tectonically controlled sea levels and climatically controlled ocean stratification and nutrient delivery. When productivity collapsed at the end of the Cretaceous, coincident with bolide impact, mosasaurs became extinct.

Polcyn, M. J., Jacobs L. L., Araújo R., Schulp A. S., & Mateus O. (2014).  Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology, Palaeoecology. 400, 17-27. Abstract
n/a
Mil\à\}n, J., Mateus O., Marzola M., & Clemmensen L. B. (2016).  Plesiosaur remains from the Lower Jurassic part of the Kap Steward Formation, Jameson Land, East Greenland \–\} evidence of the earliest marine incursion. 60th Annual Meeting Palaeontological Association. 91-92., Lyon, France Abstract
n/a
Milàn, J., Mateus O., Marzola M., & Clemmensen L. B. (2016).  Plesiosaur remains from the Lower Jurassic part of the Kap Steward Formation, Jameson Land, East Greenland – evidence of the earliest marine incursion. 60th Annual Meeting Palaeontological Association. 91-92., Lyon, France: Palaeontological Associationmilan_et_al_2016__-_kap_stewart_fm_plesiosaur_-_palass_2016.pdf
Milàn, J., Mateus O., Marzola M., & Clemmensen L. B. (2016).  Plesiosaur remains from the Lower Jurassic part of the Kap Steward Formation, Jameson Land, East Greenland – evidence of the earliest marine incursion. 60th Annual Meeting Palaeontological Association. 91-92., Lyon, France: Palaeontological Association Abstract
n/a
Araújo, R., Polcyn M., Jacobs L. L., Mateus O., & Schulp A. S. (2011).  Plesiosaur structural extreme from the Maastrichtian of Angola. 71st Annual Meeting of the Society of Vertebrate Paleontology. 63., Jan: Abstracts of the 71st Annual Meeting of the Society of Vertebrate Paleontology Abstractaraujo_et_al_mateus_2011_plesiosaur_extreme_angola_svp11abstracts.pdf

n/a

Mateus, O. (2011).  Plesiosaur structural extreme from the Maastrichtian of Angola. Abstracts of the 71st Annual Meeting of the Society of Vertebrate Paleontology. 63., 1 Abstract
n/a
Smith, A., Araújo R., & Mateus O. (2010).  A plesiosauroid skull from the Toarcian (Lower Jurassic) of Alhadas, Portugal. 70th Annual Meeting of the Society of Vertebrate Paleontology. 166A., October 10 - 13t, Pittsburgh, Pennsylvania, USA Abstractsmith_araujo__mateus_2010_plesiosauroid_skull_toarcian_jurassic_alhadas_portugal_svp10abstracts.pdf

n/a

Araújo, R., Jacobs L., Polcyn M., Mateus O., & Schulp A. (2010).  Plesiosaurs from the Maastrichtian of Bentiaba, Namibe Province, Angola. Society of Vertebrate Paleontology 70th Annual Meeting.. Abstractaraujo_polcyn_mateus__schulp_2010_plesiosaurs_from_maastrichtian_of_angola_svp10abstracts.pdf

Recent excavations at the Maastrichtian locality of Bentiaba, Namibe Province, in the southern part of Angola, have yielded high quality and partially articulated plesiosaur specimens that indicate at least three taxa were present. A new elasmosaurid is the most abundant and well-preserved plesiosaur taxon at Bentiaba. It is known from a complete articulated paddle and other elements of the skeleton, many of which remain to be collected. The most diagnostic elements so far recovered are the complete pelvic and pectoral girdles, which indicate that the Bentiaba elasmosaurid is probably a new genus because it bears an asymmetrical ventral process of the coracoids, a complete cordiform posterior coracoid vacuity, and pronounced excavation of the anterior border of the coracoids, among other characters. A polycotylid is [...]

Milàn, J., Mateus O., Mau M., Rudra A., Sanei H., & Clemmensen L. B. (2021).  A possible phytosaurian (Archosauria, Pseudosuchia) coprolite from the Late Triassic Fleming Fjord Group of Jameson Land, central East Greenland. Bulletin of the Geological Society of Denmark. 69, 71-80. Abstractmilan_et_al_2021_coprolites_greenland_bull69-71-80.pdfWebsite

A large, well-preserved vertebrate coprolite was found in a lacustrine sediment in the Malmros Klint Formation of the Late Triassic Fleming Fjord Group in the Jameson Land Basin, central East Greenland. The size and internal and external morphology of the coprolite is consistent with that of crocodilian coprolites and one end of the coprolite exhibits evidence of post-egestion trampling. As the associated vertebrate fauna of the Fleming Fjord Group contains abundant remains of pseudosuchian phytosaurs, the coprolite is interpreted as being from a large phytosaur.

Jacobs, L. L., Polcyn M. J., Mateus O., Schulp A. S., Gonçalves A. O., & Morais M. L. (2016).  Post-Gondwana Africa and the vertebrate history of the Angolan Atlantic Coast. Memoirs of Museum Victoria. 74, 343–362. Abstractjacobs_et_al_2016_post-gondwana_africa_and_the_vertebrate_history_of_the_angolan_atlantic_coast_343-362_mmv74_jacobs_4_web.pdf

n/a

Jacobs, L. L., Polcyn M. J., Mateus O., Schulp A. S., Gon?alves A. O., & Morais M. L. (2016).  Post-Gondwana Africa and the vertebrate history of the Angolan Atlantic Coast. Memoirs of Museum Victoria. 74, 343-362. Abstract
n/a
Jacobs, L. L., Polcyn M. J., Mateus O. \á\}vio, Schulp A. S., Gon\{\c c\}alves A. \ó\}nio O., & Morais M. L. (2016).  Post-Gondwana Africa and the vertebrate history of the Angolan Atlantic Coast. Memoirs of Museum Victoria. 74, 343\–\}362. Abstract
n/a
Salminen, J., Dinis J., & Mateus O. (2013).  Preliminary magnetostratigraphy for Jurassic/Cretaceous transition in Porto da Calada, Portugal. In: Veikkolainen, T., Suhonen, K., Näränen, J., Kauristie, K., and Kaasalainen, S. (eds.). XXVI Geofysiikan päivät,. 119-122., May 21-22 2013 in Helsinkisalminen.johanna_gfp2013_portugal_preliminary_magnetostratigraphy_for_jurassic_cretaceous_transition_in.pdf
Salminen, J., Dinis J., & Mateus O. (2014).  Preliminary Magnetostratigraphy for the Jurassic–Cretaceous Transition in Porto da Calada, Portugal. (Rogério Rocha, João Pais, José Carlos Kullberg, Stanley Finney, Ed.).STRATI 2013 First International Congress on Stratigraphy At the Cutting Edge of Stratigraphy. 873-877., Heidelberg New York Dordrecht London: Springer Abstractsalminen_et_al_2014_porto_da_calada_stratigraphy_jk_boundary_in_rocha_et_al_strati_.pdf

We present a stratigraphic log supporting a preliminary magnetostratigraphy of a Tithonian–Berriasian section in Porto da Calada (Portugal). Based on biostratigraphy and reversed and normal magnetostratigraphy, the location of the Tithonian–Berriasian boundary is tentatively located at ca. 52 m, not in disagreement
with former proposals. Due to the occurrence of later remagnetization (diagenesis), the magnetostratigraphic definition of the Tithonian–Berriasian section at the Cabo Espichel (Portugal) location was not able to be established.

Mateus, O. (2014).  Preliminary Magnetostratigraphy for the Jurassic–Cretaceous Transition in Porto da Calada, Portugal. (Rogério Rocha, João Pais, Kullberg, {José Carlos}, Stanley Finney, Ed.).STRATI 2013:First International Congress on Stratigraphy At the Cutting Edge of Stratigraphy. 873–877., 1: Springer International Publishing Switzerland Abstract

We present a stratigraphic log supporting a preliminary magnetostratigraphy of a Tithonian–Berriasian section in Porto da Calada (Portugal). Based on biostratigraphy and reversed and normal magnetostratigraphy, the location of the Tithonian–Berriasian boundary is tentatively located at ca. 52 m, not in disagreement with former proposals. Due to the occurrence of later remagnetization (diagenesis), the magnetostratigraphic definition of the Tithonian–Berriasian section at the Cabo Espichel (Portugal) location was not able to be established

Salminen, J., Dinis J., & Mateus O. (2014).  Preliminary Magnetostratigraphy for the Jurassic–Cretaceous Transition in Porto da Calada, Portugal. {STRATI} 2013. 873–877.: Springer Science $\mathplus$ Business Media Abstract
n/a
Milàn, J., Clemmensen L. B., Adolfssen J. S., Estrup E. J., Frobøse N., Klein N., Mateus O., & Wings O. (2012).  A preliminary report on coprolites from the Late Triassic part of the Kap Stewart Formation, Jameson Land, East Greenland. New Mexico Museum of Natural History and Science, Bulletin. 57, 203-205. Abstractmilan_et_al_2012_greenland_coprolites_triassic.pdf

The basal part of the Triassic-Jurassic (Rhaetian-Sinemurian) Kap Stewart Formation, exposed at Jameson Land, East Greenland, yields an extensive coprolite collection from black, parallel-laminated mudstone (“paper shale”), representing an open lacustrine system. Preliminary investigations show three different types of coprolites: elongated cylindrical masses, composed of irregularly wrapped layers; elongated cylindrical masses with constriction marks; and spirally-coiled specimens.

Mateus, O. (2012).  A preliminary report on coprolites from the Late Triassic part of the Kap Stewart Formation, Jameson Land, East Greenland. Bulletin of the New Mexico Museum of Natural History and Science. 57, 203–205., 1, Number NA Abstract

The basal part of the Triassic-Jurassic (Rhaetian-Sinemurian) Kap Stewart Formation, exposed at Jameson Land, East Greenland, yields an extensive coprolite collection from black, parallel-laminated mudstone (“paper shale”), representing an open lacustrine system. Preliminary investigations show three different types of coprolites: elongated cylindrical masses, composed of irregularly wrapped layers; elongated cylindrical masses with constriction marks; and spirally-coiled specimens.

Campos, H., Mateus O., & Moreno-Azanza M. (2017).  Preliminary results on the stratigraphy and taphonomy of multiple bonebeds in the Triassic of Algarve. Abstract book of the XV Encuentro de Jóvenes Investigadores en Paleontología/XV Encontro de Jovens Investigadores em Paleontologia, Lisboa, 428 pp.. 83-87. Abstractcampos_et_al._2017_preliminary_results_pn_the_stratigraphy_and_taphonomy_of_multiple_beds_in_the_triassic_of_algarve..pdf

n/a

Araújo, R., Mateus O., Walen A., & Christiansen N. (2009).  Preparation techniques applied to a stegosaurian Dinosaur from Portugal. Journal of Paleontological Techniques. 5, 1-24., Jan Abstractarajomateusetal2009.preparationtechn.pdfWebsite

General vertebrate paleontological techniques that have been used in the Museum of Lourinhã (Portugal) are presented here, in particular those applied to a stegosaurian dinosaur skeleton, Miragaia longicollum. A monolith jacket technique using polyurethane foam and plaster is presented. Mechanical preparation
techniques combining the use of an electric grinder and airscribes proved effective during the initial phases of preparation on well-preserved bone embedded in hard matrix. We also present a technique to mould monoliths in the early stages of preparation, creating a thin silicone rubber mould in several contiguous
parts. To mould and cast monoliths before removing individual bones has proven valuable for the preservation of taphonomic data and for display purposes. Polyurethane resin combined with plaster is useful for small casts, while polyester resin applied in four layers is the preferred technique for larger casts.
The four layers are composed of: a first thin layer of polyester resin with bone colour; followed by another layer of polyester resin of sediment colour and containing glass microspheres to make it thicker. The third layer is composed of fibre glass chopped strands, and the fourth is composed of fibre glass mats embedded
in plain polyester resin. 3D scanning and digitization techniques where tested for the storage of osteological information of individual bones and proved very promising.

Mateus, O. (2009).  Preparation techniques applied to a stegosaurian Dinosaur from Portugal. Journal of Paleontological Techniques. 5, 1–24., 1, Number NA Abstract
n/a
Araujo, R., Mateus O., Walen A., & Christiansen N. (2009).  Preparation techniques applied to a stegosaurian Dinosaur from Portugal: excavation, laboratory mechanical and chemical preparation, moulding and casting, 3D scanning. Journal of Paleontological Techniques 5: 22.. 22. Abstract
n/a
Jacobs, L.  L., Sousa N., Goncalves A.  O., Mateus O., Polcyn M.  J., & Schulp A.  S. (2020).  Projecto PaleoAngola: Geoheritage and Conservation Paleobiology as Science for Development in Angola. AGU Fall Meeting Abstracts. 2020, SY048-05. Abstractprojecto_paleoangola__geoheritage.pdf

n/a

Hendrickx, C., Mateus O., & Araújo R. (2015).  A proposed terminology of theropod teeth (Dinosauria, Saurischia). Journal of Vertebrate Paleontology. e982797. Abstracthendrickx_et_al_2015_theropod_teeth_svp.pdfWebsite

n/a

Hendrickx, C., Mateus O., & Araujo R. (2015).  A proposed terminology of theropod teeth (Dinosauria, Saurischia). Journal of Vertebrate Paleontology. 35, , Number 5 Abstract
n/a