Publications

Export 687 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
D
Tomas, C., Mateus O., & Abreu C. (2009).  Dinolourinhã; a integração dos jovens na paleontologia: o caso-estudo do Museu da Lourinhã. Journal of Paleontological Techniques 5: 28-29.. 28-29., Jan Abstracttomas_et_al_2009_dinolourinha_abstracts_jpt.pdf

n/a

Mateus, O. (2009).  Dinolourinhã – a integração dos jovens na paleontologia: o caso-estudo do Museu da Lourinhã.. Journal of Paleontological Techniques. 28–29., 1 Abstract
n/a
Tomas, C., Mateus O., & Abreu C. (2009).  Dinolourinhã – a integração dos jovens na paleontologia: o caso-estudo do Museu da Lourinhã.. Journal of Paleontological Techniques 5: 28-29.. Abstract
n/a
Hendrickx, C., Mateus O., & Araújo R. (2014).  The dentition of Megalosauridae (Theropoda: Dinosauria). {APP}. : Polska Akademia Nauk Instytut Paleobiologii (Institute of Paleobiology, Polish Academy of Sciences) AbstractWebsite
n/a
Hendrickx, C., Mateus O., & Araújo R. (2014).  The dentition of megalosaurid theropods, with a proposed terminology on theropod teeth. XII EAVP Meeting XII Annual Meeting of the European Association of Vertebrate Palaeontologists – Abstract Book. p. 75., Torino 24-28 June 2014hendrickx_et_al_2014_megalosaurid_teeth_eavp.pdf
Hendrickx, C., Mateus O., & Araújo R. (2015).  The dentition of megalosaurid theropods. Acta Palaeontologica Polonica. 60(3), 627–642. Abstracthendrickx_et_al_2015_theropod_teeth_app.pdfWebsite

Theropod teeth are particularly abundant in the fossil record and frequently reported in the literature. Yet, the dentition of many theropods has not been described comprehensively, omitting details on the denticle shape, crown ornamentation and enamel texture. This paucity of information has been particularly striking in basal clades, thus making identification of isolated teeth difficult, and taxonomic assignments uncertain. We here provide a detailed description of the dentition of Megalosauridae, and a comparison to and distinction from superficially similar teeth of all major theropod clades. Megalosaurid dinosaurs are characterized by a mesial carina facing mesiolabially in most mesial teeth, centrally positioned carinae on both most mesial and lateral crowns, a mesial carina terminating above the cervix, and short to well-developed interdenticular sulci between distal denticles. A discriminant analysis performed on a dataset of numerical data collected on the teeth of 62 theropod taxa reveals that megalosaurid teeth are hardly distinguishable from other theropod clades with ziphodont dentition. This study highlights the importance of detailing anatomical descriptions and providing additional morphometric data on teeth with the purpose of helping to identify isolated theropod teeth in the future.

Mateus, O. (2014).  Degradation processes and consolidation of Late Jurassic sandstone dinosaur tracks in museum environment (Museum of Lourinhã, Portugal). Geophysical Research Abstracts. Geophysical Research Abstracts, EGU2014–9026–1, 2014., 1 Abstract
n/a
Leal, S., Mateus O., Tomás C., & Dionisio A. (2014).  Degradation processes and consolidation of Late Jurassic sandstone dinosaur tracks in museum environment (Museum of Lourinhã, Portugal). EGU General Assembly 2014 - Geophysical Research Abstracts. Vol. 16, EGU2014-9026-1, 2014.leal_et_al_2014_tracks_lab_egu2014-9026-1.pdf
Hayashi, S., Carpenter K., Watabe M., Mateus O., & Barsbold R. (2008).  Defensive weapons of thyreophoran dinosaurs: histological comparisons and structural differences in spikes and clubs of ankylosaurs and stegosaurs. 28 (3, Supplement), 89A-90A. Journal of Vertebrate Paleontology. 28, 89-90., Number Suppl. to 3 Abstract
n/a
Hayashi, S., Carpenter K., Watabe M., Mateus O., & Barsbold R. (2008).  Defensive weapons of thyreophoran dinosaurs: histological comparisons and structural differences in spikes and clubs of ankylosaurs and stegosaurs. 28 (3, Supplement), 89A-90A. Journal of Vertebrate Paleontology. 28, 89–90., Number Suppl. to Abstract
n/a
Hayashi, S., Carpenter K., Watabe M., Mateus O., & Barsbold R. (2008).  Defensive weapons of thyreophoran dinosaurs: histological comparisons and structural differences in spikes and clubs of ankylosaurs and stegosaurs. Journal of Vertebrate Paleontology. 28(3, Supplement), 89A-90A., Number Suppl. to 3 Abstracthayashi_et_al_2008_histology_stegosaurs_defensive_weapons_of_thyreophoran_dinosaurs-_histological_comparisons_and_structural_differences_in_spikes_and_clubs_of_ankylosaurs_and_stegosaurs.pdfWebsite

Thyreophoran dinosaurs have spike- and club-shaped osteoderms probably used for defensive weapons. The structural and histological variations have been little known. Here, we provide the comparisons of the internal structures in defensive weapons of ankylosaurs and stegosaurs, using spikes of a polacanthid (Gastonia) and a nodosaurid (Edmontonia), clubs of ankylosaurids (Saichania and Ankylosauridae indet. from Canada), and spikes of stegosaurids (Stegosaurus and Dacentrurus), which sheds light on understandings of evolutionary history and functional implications of defensive weapons in thyreophorans. In ankylosaurs, the structural and histological features of spikes and clubs are similar with those of small osteoderms in having thin compact bones, thick cancellous bones with large vascular canals, and abundant collagen fibers. A previous study demonstrated that each of three groups of ankylosaurs (polacanthid, nodosaurid, and ankylosaurid) has distinct characteristic arrangements of collagen fibers in small osteoderms. This study shows that spikes and clubs of ankylosaurs maintain the same characteristic features for each group despite of the differences in shapes and sizes. Conversely, the spike-shaped osteoderms in primitive (Dacentrurus) and derived (Stegosaurus) stegosaurids have similar structure to each other and are significantly different from the other types of stegosaur osteoderms (throat bony ossicles and plates) in having thick compact bones with a medullary cavity. These lack abundant collagen fibers unlike ankylosaur osteoderms. The spikes of ankylosaurs and stegosaurs are similar in shape, but their structural and histological features are different in having unique structures of collagen fibers for ankylosaurs and thick compact bones for stegosaurs, providing enough strength to have large spikes and to use them as defensive weapons. Although the shapes of ankylosaur clubs are different from spikes, the internal structures are similar, suggesting that ankylosaurs maintain similar structures despite of different shapes in osteoderms. These results indicate that ankylosaurs and stegosaurs used different strategies independently to evolve defensive weapons.

Jacobs, L. L., Polcyn M. J., Mateus O., & Schulp A. S. (2023).  Deep time conservation paleobiology of the Atlantic jigsaw puzzle and the future of the southwestern Angolan coast. Bulletin of the Florida Museum of Natural History. 60(2), 90.: In: Abstracts of the 2nd Conservation Paleobiology Symposium. https://doi … Abstractjacobs_et_al_2023_jigsaw.pdf

n/a

Leal, A. S., Mateus O., Tomás C., & Dionísio A. (2014).  Decay and conservation trial of Late Jurassic sandstone with dinosaur tracks in a museum environment (Museum of Lourinhã, Portugal). Buletini i Shkencave Gjeologjike. 1(2014), 410. Abstractleal_et_al_2014_cbgassav1-_abstract_dinosaur_footprints__page_410.pdf

Abstract
Late Jurassic dinosaur footprints were found on a coastline cliff in Lourinhã, Porto das Barcas, Lagido do Forno (coordinate 39°14.178’N, 9°20.397’W, Portugal) in June 2001. The locality is characterized by steep cliffs with high slopes that are composed of gray and red sandstones/ siltstones. The location belongs to the successions of Lusitanian Basin representing the Porto Novo Member of the Lourinhã Formation. Three natural infills of tridactyl tracks, possibly ascribed to ornithopod, a bipedal herbivore were found, representing a left foot movement, a right and a left one, respectively. Footprints are 300- 400mm wide and have a height of 330-360mm. The footprints are characterized by round fingers, which are elongated due to some degradation/ erosion. The footprints were collected from the field in 2001 and subsequently cleaned, consolidated and glued in the laboratory of the Museum of Lourinhã before being exhibited in a museum display. Stone matrix was removed and a consolidation product was applied, probably a polyvinyl acetate. The footprint with broken central digit was glued with an epoxy resin, Araldite. Both applied products were confirmed by analysis of μ- FTIR and both presented colour change and detachment surface problems. The footprints have been exposed in the palaeontology hall of the Museum of Lourinhã, Portugal from 2004 without climate controlling. These trace fossils form an important part of the palaeontological collection of Late Jurassic vertebrate fossils from Lourinhã Formation. Presently, it is considered a unique heritage in danger of disappearing due to high decay level of disaggregation of its geological structure. The footprints display several pathologies, such as “Blistering”, “Powdering”, “Exfoliation”’ as well as “Dirt”, “Fracture”’, “Inscriptions”, “Consolidants” and “Adhesives” and are now in very poor conditions. Laboratorial analysed were made to evaluate the presence of salts. Moreover a microclimatic study was conducted inside the museum to evaluate the influence of thermo-hygrometric parameters on the decay processes. The future interventions will depend on the results of consolidation trials that are currently under progress by using stone samples taken from the same layer and location from Porto das Barcas applying different commercial consolidation products.

Mateus, O., Neto de Carvalho C., & Klompmaker A. A. (2013).  Decapod crustacean body and ichnofossils from the Mesozoic of Portugal. 5th Symposium on Mesozoic and Cenozoic Decapod Crustaceans. , 25–27 June 2013, Warszawa: Polish Geological Institute − National Research Institute & AGH University of Science and Technologymateus_et_al_2013_crustacea_mesozoic_portugal_5th_decapod_crustaceans_meeting_2013.pdf
Mateus, O. (2013).  Decapod crustacean body and ichnofossils from the Mesozoic of Portugal. NA, , 1 Abstract

Book of abstracts of the 5th Symposium on Mesozoic and Decapod Crustaceans

C
Marzola, M., Mateus O., Shubin N. H., & Clemmensen L. B. (2017).  Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland). Journal of Vertebrate Paleontology. e1303501., 2017: Taylor & Francis Abstractmarzola_et_al_2017_cyclotosaurus_greenland.pdfWebsite

ABSTRACTCyclotosaurus naraserluki, sp. nov., is a new Late Triassic capitosaurid amphibian from lacustrine deposits in the Fleming Fjord Formation of the Jameson Land Basin in Greenland. It is based on a fairly complete and well-preserved skull associated with two vertebral intercentra. Previously reported as Cyclotosaurus cf. posthumus, C. naraserluki is unique among cyclotosaurs for having the postorbitals embaying the supratemporals posteromedially. The anterior palatal vacuity presents an autapomorphic complete subdivision by a wide medial premaxillary-vomerine bony connection. The parasphenoid projects between the pterygoids and the exoccipitals, preventing a suture between the two, a primitive condition shared with Rhinesuchidae, Eryosuchus, and Kupferzellia. Within Cyclotosaurus, the Greenlandic skull has a distinctive combination of circular choanae (shared with C. ebrachensis, C. posthumus, and C. robustus) and a convex posteromedial margin of the tabulars (also present in C. ebrachensis and C. intermedius). A phylogenetic analysis indicates that C. naraserluki is the sister taxon of the middle Norian C. mordax from southern Germany, with which it shares a pair of premaxillary foramina. Cyclotosaurus is one of the most successful and diverse genera of Late Triassic temnospondyls, with at least eight species reported from middle Carnian to late Norian. Cyclotosaurus naraserluki is the largest amphibian ever reported from Greenland and one of the Late Triassic vertebrates with the highest northern paleolatitude currently known.http://zoobank.org/urn:lsid:zoobank.org:pub:43AAA541-031C-4EE1-B819-4846EBBD1BBBSUPPLEMENTAL DATA?Supplemental materials are available for this article for free at www.tandfonline.com/UJVPCitation for this article: Marzola, M., O. Mateus, N. H. Shubin, and L. B. Clemmensen. 2017. Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland). Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2017.1303501.ABSTRACTCyclotosaurus naraserluki, sp. nov., is a new Late Triassic capitosaurid amphibian from lacustrine deposits in the Fleming Fjord Formation of the Jameson Land Basin in Greenland. It is based on a fairly complete and well-preserved skull associated with two vertebral intercentra. Previously reported as Cyclotosaurus cf. posthumus, C. naraserluki is unique among cyclotosaurs for having the postorbitals embaying the supratemporals posteromedially. The anterior palatal vacuity presents an autapomorphic complete subdivision by a wide medial premaxillary-vomerine bony connection. The parasphenoid projects between the pterygoids and the exoccipitals, preventing a suture between the two, a primitive condition shared with Rhinesuchidae, Eryosuchus, and Kupferzellia. Within Cyclotosaurus, the Greenlandic skull has a distinctive combination of circular choanae (shared with C. ebrachensis, C. posthumus, and C. robustus) and a convex posteromedial margin of the tabulars (also present in C. ebrachensis and C. intermedius). A phylogenetic analysis indicates that C. naraserluki is the sister taxon of the middle Norian C. mordax from southern Germany, with which it shares a pair of premaxillary foramina. Cyclotosaurus is one of the most successful and diverse genera of Late Triassic temnospondyls, with at least eight species reported from middle Carnian to late Norian. Cyclotosaurus naraserluki is the largest amphibian ever reported from Greenland and one of the Late Triassic vertebrates with the highest northern paleolatitude currently known.http://zoobank.org/urn:lsid:zoobank.org:pub:43AAA541-031C-4EE1-B819-4846EBBD1BBBSUPPLEMENTAL DATA?Supplemental materials are available for this article for free at www.tandfonline.com/UJVPCitation for this article: Marzola, M., O. Mateus, N. H. Shubin, and L. B. Clemmensen. 2017. Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland). Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2017.1303501.

Marzola, M., Mateus O., Shubin N. H., & Clemmensen L. B. (2017).  Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland). Journal of Vertebrate Paleontology. e1303501., may: Informa {UK} Limited AbstractWebsite
n/a
Azanza, M. M., Coimbra R., Puértolas-Pascual E., Russo J., Bauluz B., & Mateus O. (2019).  Crystallography of Lourinhanosaurus eggshells (Dinosauria, Theropoda, Allosauroidea). Journal of Vertebrate Paleontology, Program and Abstracts. 156-157.moreno_azanza_et_al_2019_svp_abstract.pdf
Azanza, M. M., Coimbra R., Puértolas-Pascual E., Russo J., Bauluz B., & Mateus O. (2019).  Crystallography of Lourinhanosaurus eggshells (Dinosauria, Theropoda, Allosauroidea). Journal of Vertebrate Paleontology, Program and Abstracts. 156-157. Abstract
n/a
Mateus, O. (2013).  Crocodylomorphs from the Mesozoic of Portugal and a new skull of eusuchian from the Late Cretaceous. 2013 Hwaseong International Dinosaurs Expedition Symposium, pp.66-67.. , Hwaseong, South Korea Abstractmateus_2013_crocodylomorphs_portugal_new_skull.pdf

The diversity of fossil crocodylomorphs in Portugal is high, with occurrence as old as Mystriosaurus (=Steneosaurus) bollensis from the Lower Jurassic. The Late Jurassic forms are the better documented, and include the following taxa: Machimosaurus hugii, Lisboasaurus estesi Seiffert, 1973, Lusitanisuchus mitrocostatus Seiffert, 1975; Schwarz & Fechner 2004, Theriosuchus guimarotae Schwarz and Salisbury 2005, Cf. Alligatorium, Goniopholis baryglyphaeus, and a crocodylomorph-like eggs in dinosaur nests (Mateus et al., 1998; Ricqlès et al., 2001). From the Lower Cretaceous were reported a few dinosaurs but its record is strangely scarce in crocodylomorphs (Mateus et al., 2011). The Upper Cretaceous crocodiles show a large diversity, but it is mostly based in fragmentary material that require revision, such as “Crocodylus” blavieri? Grey from the Upper Campanian - Maastrichtian of Viso, near Aveiro (initially reported by Sauvage 1897-98), Goniopholis cf. crassidens Owen 1841 and Oweniasuchus pulchelus Jonet 1981. Moreover there is a fascinating, but poorly understood, crocodylomorph diversity in the Cenomanian of Portugal, documented by fragmentary specimens that have been doubtfully assigned to Thoracosaurus Leidy 1852 of the Middle Cenomanian of Cacém, to the nomen dubium Oweniasuchus lusitanicus Sauvage 1897-98 (interpreted as a mesosuchian goniopholid) based in a fragmentary mandible from the Campanian-Maastrichtian, and also from the Middle Cenomanian of Portugal, Buffetaut and Lauverjat (1978) report an fragmentary unidentified possible dyrosaurid from Nazaré. All this specimens are too incomplete to be compared with the specimen here described. In contrast, Cenozoic crocodiles of Portugal are often known after complete skulls and several individuals. The taxa list include Iberosuchus macrodon (Lower to Middle Eocene), Tomistoma calaritanus (Early Miocene) and T. lusitanica (Burdigalian-Helvetian), and Diplocynodon sp. (Antunes, 1961, 1987, 1994).
At least, two different morphotypes of crocodylomorph eggs from the Late Jurassic of Lourinhã Formation are also known.
A new specimen here reported of crocodile based in a partial skull and mandible (ML1818) from the Uppermost Middle Cenomanian platform carbonates of Baixo Mondego, west central Portugal (Tentúgal Fm., Callapez, 2004). The taxon is phylogenetically positioned as a basal Eusuchia, due to the choanae enclosed by the pterygoid, and closely related with stem Crocodylia and Borealosuchus. This specimen represents the only well documented and valid eusuchian species in the Cenomanian of Europe and is the oldest representative of an eusuchian crocodylomorph, with the exception for the Barremian Hylaeochampsa vectiana.

Guillaume, A. R. D., Moreno-Azanza M., Puértolas-Pascual E., & Mateus O. (2018).  Crocodylomorph teeth from the Lourinhã Formation, Portugal (Late Jurassic). XVI Annual Meeting of the European Association of Vertebrate Palaeontologists. 80., Caparica, Portugal June 26th-July 1st, 2018 Abstractguillaume_et_al_2018_eavp_abstract.pdf

n/a

Guillaume, A. R. D., Moreno-Azanza M., Puértolas-Pascual E., & Mateus O. (2018).  Crocodylomorph teeth from the Lourinhã Formation, Portugal (Late Jurassic). XVI Annual Meeting of the European Association of Vertebrate Palaeontologists. 80., Caparica, Portugal June 26th-July 1st, 2018 Abstract

n/a

Russo, J., Mateus O., Balbino A., & Marzola M. (2014).  Crocodylomorph eggs and eggshells from the Lourinhã Fm. (Upper Jurassic), Portugal. Comunicações Geológicas. 101, Especial I, 563-566. Abstractrusso_et_al_2014_crocodylomorph_eggs_and_eggshells_from_the_lourinha_fm_upper_jurassic_portugal.pdf

We here present fossil Crocodylomorpha eggshells from the Upper Jurassic Lourinhã Formation of Portugal, recovered from five sites: one nest from Cambelas with 13 eggs, and three partial eggs and various fragments from, Paimogo N (I), Paimogo S (II), Casal da Rola, and Peralta. All specimens but the nest were found in association with dinosaur egg material. Our research reveals that on a micro- and ultrastructural analysis, all samples present the typical characters consistent with crocodiloid eggshell morphotype, such as the shell unit shape, the organization of the eggshell layers, and the triangular blocky extinction observed with crossed nicols. We assign the material from the Lourinhã Formation to the oofamily Krokolithidae, making it the oldest crocodylomorph eggs known so far, as well as the best record for eggs of non- crocodylian crocodylomorphs. Furthermore, our study indicates that the basic structure of crocodiloid eggshells has remained stable since at least the Upper Jurassic.

Russo, J., Mateus O., Balbino A., & Marzola M. (2014).  Crocodylomorph eggs and eggshells from the Lourinhã Fm. (Upper Jurassic), Portugal. Comunica\\c cões Geológicas. 101, Especial I, 563-566. Abstract
n/a
Russo, J., Mateus O., Balbino A., & Marzola M. (2014).  Crocodylomorph eggs and eggshells from the Lourinhã Fm. (Upper Jurassic), Portugal. Comunica\\c cões Geológicas. 101, Especial I, 563-566. Abstract
n/a
Russo, J., Mateus O., Balbino A., & Marzola M. (2014).  Crocodylomorph eggs and eggshells from the Lourinhã Fm. (Upper Jurassic), Portugal. Comunica\\c cões Geológicas. 101, Especial I, 563-566. Abstract

We here present fossil Crocodylomorpha eggshells from the Upper Jurassic Lourinhã Formation of Portugal, recovered from five sites: one nest from Cambelas with 13 eggs, and three partial eggs and various fragments from, Paimogo N (I), Paimogo S (II), Casal da Rola, and Peralta. All specimens but the nest were found in association with dinosaur egg material. Our research reveals that on a micro- and ultrastructural analysis, all samples present the typical characters consistent with crocodiloid eggshell morphotype, such as the shell unit shape, the organization of the eggshell layers, and the triangular blocky extinction observed with crossed nicols. We assign the material from the Lourinhã Formation to the oofamily Krokolithidae, making it the oldest crocodylomorph eggs known so far, as well as the best record for eggs of non- crocodylian crocodylomorphs. Furthermore, our study indicates that the basic structure of crocodiloid eggshells has remained stable since at least the Upper Jurassic.

Gaspar, A., Avelar T., & Mateus O. (2007).  Criacionismo e Sociedade no Séc. XX. (Avelar, T., O. Mateus, Almada, F., Gaspar, A., Ed.).Evolução e Criacionismo: Uma Relação Impossível. 133-160., Lisboa: Quasi ed. gasparavelarmateus2007evoluoecriacio.pdf
Gaspar, A., Avelar T., & Mateus O. (2007).  Criacionismo e Sociedade no Séc. XX.  Evolução e Criacionismo: Uma Relação Impossível. 133-160., Lisboa Abstract
n/a
Jacobs, L., Polcyn M., Mateus O., Schulp A. S., & Neto A. B. (2009).  The Cretaceous Skeleton Coast of Angola. Journal of Vertebrate Paleontology. 29, 121A., Jan Abstractjacobs_et_al_2009cretaceousskeletoncoas.pdfWebsite

n/a

Mateus, O. (2009).  The Cretaceous Skeleton Coast of Angola. Journal of Vertebrate Paleontology. 29, 121A., 1, Number 3: Taylor & Francis Abstract

THE CRETACEOUS SKELETON COAST OF ANGOLA JACOBS, Louis, SMU, Dallas, TX, USA; POLCYN, Michael, SMU, Dallas, TX, USA; MATEUS, Octávio, Museu da Lourinhã, Lourinhã, Portugal; SCHULP, Anne, Natuurhistorisch Museum Maastricht, Maastricht, Netherlands; NETO, André , Universidade Agostinho Neto, Luanda, Angola Cretaceous coastal sediments of Angola present a rich and diverse fauna of marine amniotes, including turtles, mosasaurs, and plesiosaurs. The abundance of mosasaurs in particular suggests a highly productive coastal area. Angola today lies at the northern limit of the Namibian Desert, the so-called Skeleton Coast, which results from prevailing southeasterly winds of the descending limb of the southern Hadley Cell sweeping across the African coast. The Benguela upwelling and a highly productive sea are found today off the Namibian Desert coast. However, the Benguela upwelling system, based on results of DSDP studies, is said to have originated in the late Neogene and therefore cannot explain the productivity found along the length of the West African coast. The explanation is found in the northward drift of Africa through the arid climate zone, and is demonstrated by the tracing of the paleogeographic position of fossil localities through time.

Mateus, O. (2009).  The Cretaceous Skeleton Coast of Angola. 29, , 1 Abstract
n/a
Jacobs, L., Polcyn M., Mateus O., Schulp, & Neto A. (2009).  The Cretaceous Skeleton Coast of Angola. Journal of Vertebrate Paleontology. 29, 121., Number 3 Abstract
n/a
Jacobs, L. L., Polcyn M. J., Mateus O., Schulp A. S., & Neto A. (2009).  The Cretaceous Skeleton Coast of Angola. Journal of Vertebrate Paleontology. 29, 121–121., Number 3 Abstract
n/a
Jacobs, L. L., Mateus O., Polcyn M. J., Schulp A. S., Scotese C. R., Goswami A., Ferguson K. M., Robbins J. A., Vineyard D. P., & Neto A. B. (2009).  Cretaceous paleogeography, paleoclimatology, and amniote biogeography of the low and mid-latitude South Atlantic Ocean. BULLETIN DE LA SOCIETE GEOLOGIQUE DE FRANCE. 180, 333-341., Jan: Univ Agostinho Neto, Univ Nova Lisboa, So Methodist Univ, Univ Texas Arlington, Museu Lourinha, Nat Hist Museum Abstractjacobs_mateus_et_al_2009_cretaceous_paleogeography_paleoclimatology_and_amniote_biogeography_of_the_south_atlantic_ocean_angola_africa_currents.pdf

n/a

Jacobs, L. L., Mateus O., Polcyn M. J., Schulp A. S., Scotese C. R., Goswami A., Ferguson K. M., Robbins J. A., Vineyard D. P., & Neto A. B. (2009).  Cretaceous paleogeography, paleoclimatology, and amniote biogeography of the low and mid-latitude South Atlantic Ocean. Bulletin de la Societe Geologique de France. 180, 333-341., Number 4 Abstract
n/a
Mateus, O., Morais M., Schulp A., Jacobs L., & Polcyn M. (2006).  The Cretaceous of Angola. JOURNAL OF VERTEBRATE PALEONTOLOGY. 26, 96A-97A., Jan Abstractmateus_et_al_2006_svp_abstracts_cretaceous_fo_angola.pdf

n/a

Mateus, O., Morais M. L., Schulp A. S., Jacobs L. L., & Polcyn M. J. (2006).  The Cretaceous of Angola. Journal of Vertebrate Paleontology. 26, 96-97., Number (Suppl. To 3) Abstract
n/a
Mateus, O., Morais M. L., Schulp A. S., Jacobs L. L., & Polcyn M. J. (2006).  The Cretaceous of Angola. Journal of Vertebrate Paleontology. 26, 96–97., Number (Suppl. T Abstract
n/a
Mateus, O., Polcyn M. J., Jacobs L. L., Araújo R., Schulp A. S., Marinheiro J., Pereira B., & Vineyard D. (2012).  Cretaceous amniotes from Angola: dinosaurs, pterosaurs, mosasaurs, plesiosaurs, and turtles. V Jornadas Internacionales sobre Paleontología de Dinosaurios y su Entorno. 71-105., Salas de los Infantes, Burgos Abstractmateus_et_al_2012_amniotes_from_angola_cretaceous_amniotes_from_angola_dinosaurs_pterosaurs_mosasaurs.pdf

Although rich in Cretaceous vertebrate fossils, prior to 2005 the amniote fossil record of Angola was poorly known. Two horizons and localities have yielded the majority of the vertebrate fossils collected thus far; the Turonian Itombe Formation of Iembe in Bengo Province and the Maastrichtian Mocuio Formation of Bentiaba in Namibe Province. Amniotes of the Mesozoic of Angola are currently restricted to the Cretaceous and include eucryptodire turtles, plesiosaurs, mosasaurs, pterosaurs, and dinosaurs. Recent collecting efforts have greatly expanded our knowledge of the amniote fauna of Angola and most of the taxa reported here were unknown prior to 2005.

Marx, M. P., Mateus O., Polcyn M. J., Schulp A. S., Gonçalves O. A., & Jacobs L. L. (2021).  The cranial anatomy and relationships of Cardiocorax mukulu (Plesiosauria: Elasmosauridae) from Bentiaba, Angola. PLOS ONE. 16(8), e0255773 - ., 2021/08/17: Public Library of Science Abstractmarx_et_al_2021_cardiocorax_angola.pdfWebsite

We report a new specimen of the plesiosaur Cardiocorax mukulu that includes the most complete plesiosaur skull from sub-Saharan Africa. The well-preserved three-dimensional nature of the skull offers rare insight into the cranial anatomy of elasmosaurid plesiosaurians. The new specimen of Cardiocorax mukulu was recovered from Bentiaba, Namibe Province in Angola, approximately three meters above the holotype. The new specimen also includes an atlas-axis complex, seventeen postaxial cervical vertebrae, partial ribs, a femur, and limb elements. It is identified as Cardiocorax mukulu based on an apomorphy shared with the holotype where the cervical neural spine is approximately as long anteroposteriorly as the centrum and exhibits a sinusoidal anterior margin. The new specimen is nearly identical to the holotype and previously referred material in all other aspects. Cardiocorax mukulu is returned in an early-branching or intermediate position in Elasmosauridae in four out of the six of our phylogenetic analyses. Cardiocorax mukulu lacks the elongated cervical vertebrae that is characteristic of the extremely long-necked elasmosaurines, and the broad skull with and a high number of maxillary teeth (28–40) which is characteristic of Aristonectinae. Currently, the most parsimonious explanation concerning elasmosaurid evolutionary relationships, is that Cardiocorax mukulu represents an older lineage of elasmosaurids in the Maastrichtian.

Stockdale, M., Benton M., & Mateus O. (2014).  Cracking dinosaur endothermy: paleophysiology unscrambled. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 235-236.stockdale_et_al_2014_eggshells_abstract_svp.pdf
Mateus, O. (2014).  Cracking dinosaur endothermy: paleophysiology unscrambled. NA, , 1 Abstract

The amniote eggshell functions as a respiratory structure adapted for the optimal transmission of respiratory gasses to and from the embryo according to its physiological requirements. Therefore amniotes with higher oxygen requirements, such as those that sustain higher metabolic rates, can be expected to have eggshells that can maintain a greater gas flux to and from the egg. Studies of extant amniotes have found that eggshells of reduced porosity impose a limit on the metabolic rate of the offspring. Here we show a highly significant relationship between metabolic rates and eggshell porosity in extant amniotes that predicts highly endothermic metabolic rates in dinosaurs. This study finds the eggshell porosity of extant endotherms to be significantly higher than that of extant ectotherms. Eggshell porosity values of dinosaurs are found to be significantly higherthan that of extant ectotherms, but not extant endotherms. Dinosaur eggshells are commonly preserved in the fossil record, and porosity may be readily identified and measured. This provides a simple tool to identify metabolic rates in extinct egg-laying tetrapods whose eggs possessed a mineralized shell

Mateus, I., Mateus H., Antunes M. T., Mateus O., Taquet P., Ribeiro V., & Manuppella G. (1997).  Couvée, œufs et embryons d'un Dinosaure Théropode du Jurassique supérieur de Lourinhã (Portugal). Comptes Rendus de l'Academie de Sciences - Serie IIa: Sciences de la Terre et des Planetes. 325, 71–78., Number 1 Abstract
n/a
Mateus, I., Mateus H., Antunes M. T., Mateus O., Taquet P., Ribeiro V., & Manuppella G. (1997).  Couvée, øe}ufs et embryons d{\textquotesingle}un Dinosaure Théropode du Jurassique supérieur de Lourinha (Portugal). Comptes Rendus de l{\textquotesingle}Académie des Sciences - Series {IIA} - Earth and Planetary Science. 325, 71–78., jul, Number 1: Elsevier {BV} AbstractWebsite
n/a
Mateus, I., Mateus H., Antunes M. T., Mateus O., Taquet P., Ribeiro V., & Manuppella G. (1997).  Couvée, oeufs et embryons d'un dinosaure théropode du Jurassique supérieur de Lourinhã (Portugal). C.R Acad. Sci. Paris, Sciences de la terre et des planetes. 325, 71-78., Jully, Number 1 Abstractmateus_et_al_1997_eggs_embryos_nest__couvee_oeufs_et_embryons_dun_dinosaure_theropode_du_jurassique_superieur_de_lourinha_portugal.pdfWebsite

Several well preserved clutches of dinosaurs have been discovered in the upper Kimmeridgian/ Tithonian of Lourinhã (Estramadur Province, Portugal). Some eggs of one clutch contained embryo elements of a theropod dinosaur. The egg-shell resembles that of eggs which have been discovered in the Upper Jurassic of Colorado

Mateus, I., Mateus H., Antunes M. T., Mateus O., Taquet P., Ribeiro V., & Manuppella G. (1997).  Couvée, oeufs et embryons d'un dinosaure théropode du Jurassique supérieur de Lourinhã (Portugal). Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science. 325, 71–78., Number 1 Abstract
n/a
Hansen, B. B., Milàn J., Clemmensen L. B., Adolfssen J. S., Estrup E. J., Klein N., Mateus O., & Wings O. (2016).  Coprolites from the Late Triassic Kap Stewart Formation, Jameson Land, East Greenland: morphology, classification and prey inclusions. Geological Society, London, Special Publications. 434(1), 49-69. Abstracthansen_et_al_2015_coprolites_from_the_late_triassic_kap_stewart_formation_jameson_land_east_greenland.pdfWebsite

A large collection of vertebrate coprolites from black lacustrine shales in the Late Triassic (Rhaetian–Sinemurian) Kap Stewart Formation, East Greenland is examined with regard to internal and external morphology, prey inclusions, and possible relationships to the contemporary vertebrate fauna. A number of the coprolites were mineralogically examined by X-ray diffraction (XRD), showing the primary mineral composition to be apatite, clay minerals, carbonates and, occasionally, quartz in the form of secondary mineral grains. The coprolite assemblage shows multiple sizes and morphotypes of coprolites, and different types of prey inclusions, demonstrating that the coprolite assemblage originates from a variety of different producers.Supplementary material: A description of the size, shape, structure, texture, contents and preservation of the 328 specimens is available at https://doi.org/10.6084/m9.figshare.c.2134335