Coauthored Publications with: Larrinaga

Journal Article

Larrinaga, P, Chastre C, San-José JT, Garmendia L.  2013.  Non-linear analytical model of composites based on basalt textile reinforced mortar under uniaxial tension, 12//. Composites Part B: Engineering. 55:518-527. AbstractWebsite

The recent development of inorganic based composites as low-cost materials in reinforced concrete structural strengthening and precast thin-walled components, requires the creation of models that predict the mechanical behaviour of these materials. Textile Reinforced Mortar (TRM) shows complex stress–strain behaviour in tension derived from the heterogeneity of its constituent materials. This complexity is mainly caused by the formation of several cracks in the inorganic matrix. The multiple cracking leads to a decrease in structural stiffness. Due to the severe conditions of the serviceability limit state in structural elements, the prediction of the stress–strain curve is essential for design and calculation purposes. After checking other models, an empirical nonlinear approach, which is based on the crack control expression included in the Eurocode 2, is proposed in this paper. Following this scope, this paper presents an experimental campaign focused on 31 TRM specimens reinforced with four different reinforcing ratios. The results are analysed and satisfactorily contrasted with the presented non-linear approach.

Larrinaga, P, Chastre C, Biscaia HC, San-José JT.  2014.  Experimental and Numerical Modelling of Basalt Textile Reinforced Mortar Behavior Under Uniaxial Tensile Stress. Materials & Design. 55(March):66-74. AbstractWebsite

During the last years several projects and studies have improved the knowledge about Textile Reinforced Mortar (TRM) technology. TRM has already been used in strengthening masonry and reinforced concrete structural elements such as walls, arches, columns and beams. This material is presented as a real alternative to the use of fibre-reinforced polymers (FRP) in situations where these composites have presented some drawbacks or their use is banned. Textile Reinforced Mortar show a complex mechanical behaviour derived from the heterogeneity of the constituent materials. This paper aims to deepen the knowledge of this composite material in terms of tensile behaviour. Following this scope, this paper presents an experimental campaign focused on thirty one TRM specimens reinforced with four different reinforcing ratios. The results are analysed and contrasted with two distinct models. i) the Aveston-Cooper-Kelly theory (ACK) which is based on a tri-linear analytical approach; and ii) a nonlinear numerical simulation with a 3D Finite Element code. The Finite Element Analysis (FEA) of the TRM tensile tests also showed no significant dependence on the basalt-to-mortar interface, i.e., the choice of a bond-slip curve in order to reproduce the bond stresses and slippages along the interface is irrelevant and it can be simply considered as rigid interface.