Valtchev, {S. S. }, and {J. J. } Pamies-Teixeira,
"Culture of the European Student with an Insight to the Future Needs of the Global (European) Labour Market",
Proceedings of the European Politechnical University, vol. 1, no. NA, pp. 78–82, 1, 2012.
AbstractRecent issues of global heating and energy shortages are imposing a need to change our paradigm around transportation. Somehow, electric vehicles are progressively standing as a strong and necessary alternative for the society. Technically and technologically the acceptance of the EV is easier now than ever but the psychology of the consumers and the running business of internal combustion vehicles, the whole existing infrastructure are too much conservative to be changed easily. The changes in technology require changes in the engineering society and its human resources. The objective of this paper is to give a contribution to the discussion and reflection of potential future scenarios where EV/HEV‘s are spread across the society. It gives an overview of the range of knowledge and competences necessary for a sustainable and streamlined development of those. In fact, it is expected that a new kind of professional profiles need to be created or developed to supply the work market with the right human resources. The paper provides some discussion on the creation of new profiles or adaption of existing ones. Among different possible scenarios the creation of post-graduation courses for students holding undergraduate profiles in the fields referred to earlier would be an interesting and viable solution for fast response. The post graduation would be focused in specific key areas of the EV/HEV. Several factors are pointed out to endorse this scenario
Valtchev, S., and B. J. Klaassens,
"Efficient Resonant Power Conversion",
IEEE Transactions on Industrial Electronics, vol. 37, no. 6: IEEE, pp. 490–495, 1990.
AbstractThe DC analysis of a series-resonant converter operating above resonant frequency is presented. The results are used to analyze the current form factor and its effect on the efficiency. The selection of the switching frequency to maximize the efficiency is considered. The derived expressions are generalized and can be applied to calculations in any of the switching modes for a series-resonant circuit. For switching frequencies higher than the resonant frequency, an area of more efficient operation is indicated which will aid in the design of this class of converters and power supplies. It is pointed out that (especially for power MOSFETs where ohmic losses dominate) it is more attractive to select switching frequencies that are higher than the resonant frequency because of the possibility of nondissipative snubbers. Slowing down the rise of the gate voltage and, hence, the slow decrease of ON resistance during turn-on is also not a drawback to high-frequency switching. Because of this safer operation, the standard intrinsic diode of the power MOSFET could be used at high frequencies instead of the more expensive FREDFET
Inácio, S., D. Inácio, J. M. Pina, S. Valtchev, M. V. Neves, and A. L. Rodrigues,
"An electrical gearbox by means of pole variation for induction and superconducting disc motor",
Journal of Physics: Conference Series, vol. 97, pp. 012221, 2008.
AbstractIn this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a HTS disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque?speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators, and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics (namely their torque?speed characteristics for different number of pole pairs) and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software, whereas superconductivity was simulated by the E-J power law. The Electromechanical performances of both motors where computed and are presented and compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed.
Baikova, {E. N. }, L. Romba, {S. S. } Valtchev, R. Melicio, V. {Fernão Pires}, A. Krusteva, and G. Gigov,
"Electromagnetic field generated by a wireless energy transfer system: comparison of simulation to measurement",
Journal of Electromagnetic Waves and Applications, vol. 32, no. 5: Taylor & Francis, pp. 554–571, 3, 2018.
AbstractThis paper presents a wireless energy transfer system operating at the frequency values of kHz order: modeling, simulation, and comparison with prototype measurement results. Wireless energy transfer system model using finite element method was carried out to simulate the electric field and the magnetic flux density for different air gap sizes between the transmitter and the receiver coils. Results are presented and compared with the electromagnetic emission measurements radiated by the wireless energy transfer system prototype. The electric field comparison between the simulated and the prototype measurement values shows an error of roughly 8.7{%}. In the recent years, the interest in the wireless energy transfer technology, especially for electric vehicles batteries charging, is rapidly increasing. As a result of the increasing application of this technology in the industrial and consumer electronic products, more concerns are raised about the electromagnetic compatibility, since the wireless energy transfer systems produce electromagnetic emissions in the surrounding environment.
Vasilev, V., V. Batchev, M. Milev, S. Valtchev, and A. Tatzov,
"An Electronic System for Rowers' Propulsion Motion Activities Studies",
Problems of the Physical Culture and Sport (now: "Sport and Science Magazine"), no. 2, pp. 13–17, February, 1986.
Atanasov, A., I. Valtchev, D. Kolevska, and S. Valtchev,
"Experimental Research of the Boron Nitride Diffusion",
Elektropromishlenost i Priborostroene (now: Elektrotechnica & Elektronica), no. 1, pp. 31–35, January, 1978.
vanWesenbeeck, M. P. N., J. B. Klaassens, U. vonStockhausen, A. M. D. Anciola, and S. S. Valtchev,
"A multiple-switch high-voltage DC-DC converter",
IEEE Transactions on Industrial Electronics, vol. IE-44, no. 6: IEEE, pp. 780–787, December, 1997.
AbstractSeries connection of power devices has evolved into a mature technique and is widely applied in HV dc systems. Static and dynamic voltage balance is ensured by shunting individual devices with dissipative snubbers. The snubber losses become pronounced for increased operating frequencies and adversely affect power density. Capacitive snubbers do not exhibit these disadvantages, but they require a zero-voltage switching mode. Super-resonant power converters facilitate the principle of zero-voltage switching. A high-voltage dc-dc power converter with multiple series-connected devices is proposed. It allows the application of nondissipating snubbers to assist the voltage sharing between the multiple series-connected devices and lowers turn-off losses. Simulation results obtained with a circuit simulator are validated in an experimental converter operating with two series-connected devices. The behavior of the series connection is examined for MOSFET's and insulated gate bipolar transistors (IGBT's) by both experimental work with a 2-kW prototype and computer simulation. Applications can be found in traction and heavy industry, where the soft-switching converter is directly powered from a high-voltage source.
vanWesenbeeck, M. P. N., J. B. Klaassens, U. vonStockhausen, A. Muñoz De Morales Anciola, and S. S. Valtchev,
"A multiple-switch high-voltage dc-dc converter",
IEEE Transactions on Industrial Electronics, vol. 44, no. 6, pp. 780-787, 1997.
Abstractn/a
Matos Filipe, L., T. G. Santos, S. Valtchev, J. Pamies Teixeira, and R. M. Miranda,
"New method employing the electrical impedance for monitoring mechanical damage evolution in glass-reinforced: Applications to riveted joints",
Materials and Design, vol. 42, pp. 25-31, 2012.
Abstractn/a
Pereira, P., S. Valtchev, J. Pina, A. Gonçalves, V. M. Neves, and A. L. Rodrigues,
"Power electronics performance in cryogenic environment: evaluation for use in HTS power devices",
Journal of Physics: Conference Series, vol. 97: iopscience, pp. 012219, 2008.
AbstractPower electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications.
Valtchev, S., B. Borges, K. Brandisky, and B. J. Klaassens,
"Resonant Contactless Energy Transfer With Improved Efficiency",
IEEE Transactions on Power Electronics, vol. 24, no. 3: IEEE, pp. 685–699, 2009.
AbstractThis paper describes the theoretical and experimental results achieved in optimizing the application of the series loaded series resonant converter for contactless energy transfer. The main goal of this work is to define the power stage operation mode that guarantees the highest possible efficiency. The results suggest a method to select the physical parameters (operation frequency, characteristic impedance, transformer ratio, etc.) to achieve that efficiency improvement. The research clarifies also the effects of the physical separation between both halves of the ferromagnetic core on the characteristics of the transformer. It is shown that for practical values of the separation distance, the leakage inductance, being part of the resonant inductor, remains almost unchanged. Nevertheless, the current distribution between the primary and the secondary windings changes significantly due to the large variation of the magnetizing inductance. An approximation in the circuit analysis permits to obtain more rapidly the changing values of the converter parameters. The analysis results in a set of equations which solutions are presented graphically. The graphics show a shift of the best efficiency operation zone, compared to the converter with an ideally coupled transformer. Experimental results are presented confirming that expected tendency.
Valtchev, S., B. Borges, K. Brandisky, and J. B. Klaassens,
"Resonant contactless energy transfer with improved efficiency",
IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 685-699, 2009.
Abstractn/a
Baikova, E. N., S. S. Valtchev, R. Melicio, A. Krusteva, and V. Fernão Pires,
"Study of the electromagnetic interference generated by wireless power transfer systems",
International Review of Electrical Engineering, vol. 11, no. 5, pp. 526-534, 2016.
Abstractn/a
Valtchev, S., B. J. Klaassens, and M. van Wesenbeeck,
"Super?Resonant Converter with Switched Resonant Inductor with PFM?PWM Control,",
IEEE Transactions on Power Electronics, vol. 10, no. 6: IEEE, pp. 760–765, November, 1995.
Pina, J., P. Pereira, S. Valtchev, A. Gonçalves, V. M. Neves, A. Alvarez, and L. Rodrigues,
"A test rig for thrust force measurements of an all HTS linear synchronous motor",
Journal of Physics: Conference Series, vol. 97: IOPScience, pp. 012220, 2008.
AbstractThis paper presents the design of a test rig for an all HTS linear synchronous motor. Although this motor showed to have several unattractive characteristics, its design raised a number of problems which must be considered in future HTS machines design. HTS electromagnetic properties led to the development of new paradigms in electrical machines and power systems, as e. g. in some cases iron removal and consequent assembly of lighter devices. This is due to superconductor's ability to carry high currents with minimum losses and consequent generation in the surrounding air of flux densities much higher than the allowed by ferromagnetic saturation. However, severe restrictions in HTS power devices design that goes further beyond cryogenic considerations must be accounted in. This is usually the case when BSCCO tapes are used as conductors. Its bending limitations and the presence of flux components perpendicular to tape surface, due to the absence of iron, have to be considered for it may turn some possible applications not so attractive or even practically unfeasible. An all HTS linear synchronous motor built by BSCCO tapes as armature conductors and two trapped-flux YBCO bulks in the mover was constructed and thrust force measurements are starting to be performed. Although the device presents severe restrictions due to the exposed and other reasons, it allowed systematising its design. A pulsed-field magnetiser to generate opposite fluxes for both YBCO bulks is also detailed. Thrust force numerical predictions were already derived and presented.
Cavalheiro, D., F. Moll, and S. Valtchev,
"TFET-Based Power Management Circuit for RF Energy Harvesting",
IEEE Journal of the Electron Devices Society, vol. 5, no. 1: Institute of Electrical and Electronics Engineers, pp. 7–17, 1, 2017.
AbstractThis paper proposes a Tunnel FET (TFET)-based power management circuit (PMC) for ultra-low power RF energy harvesting applications. In contrast with conventional thermionic devices, the band-to-band tunneling mechanism of TFETs allows a better switching performance at sub-0.2 V operation. As a result, improved efficiencies in RF-powered circuits are achieved, thanks to increased rectification performance at low power levels and to the reduced energy required for a proper PMC operation. It is shown by simulations that heterojunction TFET devices designed with III-V materials can improve the rectification process at received power levels below-20 dBm (915 MHz) when compared to the application of homojunction III-V TFETs and Si FinFETs. For an available power of-25 dBm, the proposed converter is able to deliver 1.1 $μ }\text{W}$ of average power (with 0.5 V) to the output load with a boost efficiency of 86{%}.
Romba, L., {S. S. } Valtchev, and R. Melício,
"Three-phase magnetic field tested in wireless power transfer system",
International Review of Electrical Engineering, vol. 11, no. 6: Praise Worthy Prize, pp. 586–597, 1, 2016.
AbstractThis paper presents a magnetic field three dimensional mapping produced by a threephase prototype for wireless power transfer. The presented magnetic field mapping is a contribution to improve the design of electric vehicles battery chargers using the wireless power transfer. To collect the magnetic field data, a prototype was built, in order to support the tests. The prototype primary is an electrical three-phase system that allows to be connected electrically and geometrically in star or delta. The losses due to the magnetic field dispersion and the generated interferences in the surrounding equipment or in human body are discussed. The different standards organizations related to electric vehicles battery chargers are presented. Finally the magnetic field influence on the human body is addressed.