Inácio, S.,
Projecto de uma caixa de velocidades eléctrica por meio da variação do número de pólos para motores em disco de rotor em alumínio e em materiais supercondutores de alta temperatura (SAT),
: FCT-UNL, May, 2008.
AbstractNesta dissertação apresenta-se um motor em disco polifásico inovador bem como uma estratégia de controlo com base no método de variação de velocidade por comutação do número de pares de pólos. A configuração das bobinas aliada à escolha das correntes e tensões que se injectam nas bobinas dos estatores, permite comutar electronicamente o número de pólos do motor entre 2, 4 6 e 8 pólos, conseguindo-se controlar a característica binário?velocidade do motor. O motor em disco possui a bobinagem feita em cobre com dois semi-estatores, em que quando utiliza o rotor em alumínio (com condutividade diferente de zero) comporta-se como um motor de indução convencional. Quando se substitui o rotor em alumínio por um constituído por um supercondutor de alta temperatura (SAT), o dispositivo comporta-se como um motor de histerese. O princípio de funcionamento do motor em disco convencional é baseado na indução de força electromotrizes no rotor e, consequentemente, uma vez que o alumínio é bom condutor eléctrico, correntes eléctricas induzidas, originadas por haver um campo magnético variável que é criado pelos semi-estatores. O comportamento deste tipo de motores, no que diz respeito a principais características (como o binário?velocidade para os diferentes números de pares de pólos), circuito equivalente de Steinmetz, entre outras teorias associadas é já conhecido há bastante tempo. O princípio de funcionamento do motor SAT é diferente do apresentado anteriormente, funciona com base na dinâmica de vórtices e devido ao facto de aparecer o fenómeno de ancoragem de fluxo (flux pinning) nos supercondutores de alta temperatura. Como o campo magnético varia, então o disco roda. Este motor tem um princípio de funcionamento muito mais complexo que o motor de indução sendo a obtenção do modelo do motor SAT complicada. A obtenção do modelo do motor SAT não é abordado nesta dissertação. Os comportamentos e modos de operação do motor com disco de alumínio e em materiais SAT são simulados através de um programa comercial de elementos finitos, nesta dissertação, sendo a supercondutividade simulada com base na relação entre o campo eléctrico e a densidade de corrente pela lei da potenciação (E-J power law). Com as simulações pretende-se comparar o rendimento electromecânico de ambos os motores.
Valtchev, S.,
"Contactless Power Transfer",
Seminar of S.Valtchev on Contactless Power Transfer, July, 2008.
AbstractThis seminar was a presentation of S.Valtchev on the methods of wireless energy transfer. The seminar was invited by the colleagues of the Power Processing Laboratory of TU Delft, the Netherlands.
Valtchev, S.,
Series Resonant Power Converter for Contactless Energy Transfer with Improved Efficiency,
: UTL-IST (Portugal), TU Delft (the Netherlands), April, 2008.
AbstractThe development of more efficient power converters is the most important and challenging task for Power Electronics specialists. In the same time, many currently existing or yet to appear future applications require full mechanical independence between the transmitter and receiver of the electrical energy. This contactless form of energy transfer is the concern of the presented work. The work is based on the study of the Series Loaded Series Resonant converter which prove to be the best suitable for the contactless energy transfer. The work investigates the idealized Series Resonant Power Converter with the objective to find the best efficiency zones of operation. Generalized expressions obtained are original and useful. Based on the magnetic parameters of the loosely coupled transformer (magnetic link), the characteristics of the contactless power converter are described in approximated form. The approximation permits easier and faster calculation of the converter variables, thus predicting a shift of the maximum efficiency zone compared to the ideal converter case. The approximated form of the equations permitted to present a new instantaneous form of regulation which combines the frequency and pulse width modes which is free from the previously known defects. The method is based on calculating the energy portions supplied to the load during each half period. Measurements performed on industrial converters and on the laboratory experimental converter, confirm the predicted theoretically behaviour of the converter.
Inácio, S., D. Inácio, J. M. Pina, S. Valtchev, M. V. Neves, and A. L. Rodrigues,
"An electrical gearbox by means of pole variation for induction and superconducting disc motor",
Journal of Physics: Conference Series, vol. 97, pp. 012221, 2008.
AbstractIn this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a HTS disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque?speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators, and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics (namely their torque?speed characteristics for different number of pole pairs) and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software, whereas superconductivity was simulated by the E-J power law. The Electromechanical performances of both motors where computed and are presented and compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed.
Pereira, P., S. Valtchev, J. Pina, A. Gonçalves, V. M. Neves, and A. L. Rodrigues,
"Power electronics performance in cryogenic environment: evaluation for use in HTS power devices",
Journal of Physics: Conference Series, vol. 97: iopscience, pp. 012219, 2008.
AbstractPower electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications.
Pina, J., P. Pereira, S. Valtchev, A. Gonçalves, V. M. Neves, A. Alvarez, and L. Rodrigues,
"A test rig for thrust force measurements of an all HTS linear synchronous motor",
Journal of Physics: Conference Series, vol. 97: IOPScience, pp. 012220, 2008.
AbstractThis paper presents the design of a test rig for an all HTS linear synchronous motor. Although this motor showed to have several unattractive characteristics, its design raised a number of problems which must be considered in future HTS machines design. HTS electromagnetic properties led to the development of new paradigms in electrical machines and power systems, as e. g. in some cases iron removal and consequent assembly of lighter devices. This is due to superconductor's ability to carry high currents with minimum losses and consequent generation in the surrounding air of flux densities much higher than the allowed by ferromagnetic saturation. However, severe restrictions in HTS power devices design that goes further beyond cryogenic considerations must be accounted in. This is usually the case when BSCCO tapes are used as conductors. Its bending limitations and the presence of flux components perpendicular to tape surface, due to the absence of iron, have to be considered for it may turn some possible applications not so attractive or even practically unfeasible. An all HTS linear synchronous motor built by BSCCO tapes as armature conductors and two trapped-flux YBCO bulks in the mover was constructed and thrust force measurements are starting to be performed. Although the device presents severe restrictions due to the exposed and other reasons, it allowed systematising its design. A pulsed-field magnetiser to generate opposite fluxes for both YBCO bulks is also detailed. Thrust force numerical predictions were already derived and presented.