Ferreira, I., Águas Pereira Fortunato Martins H. L. E. "
Properties of a-Si:H intrinsic films produced by HWPA-CVD technique."
Thin Solid Films. 451-452 (2004): 366-369.
AbstractIn this paper, we investigate the optoelectronic properties and the photodegradation of amorphous silicon films produced by the hot wire plasma assisted technique (HWPA-CVD). We observed that hydrogen dilution in the gas phase plays an important role in the time dependence of the photoconductivity, which is correlated with an enhancement of defect density. We also compare the degradation of these films with those produced by plasma enhanced and by hot wire chemical vapour deposition techniques (PECVD and HW-CVD) and we found lower time dependence for the photodegradation of the films produced by HWPA-CVD technique © 2003 Elsevier B.V. All rights reserved.
Ferreira, I., Fortunato Martins E. R. "
Porous silicon thin film gas sensor."
Materials Research Society Symposium - Proceedings. Vol. 664. 2001. A2671-A2676.
AbstractThe performances of amorphous and nano-crystalline porous silicon thin films as gas detector are pioneer reported in this work. The films were produced by the hot wire chemical vapour deposition (HW-CVD). These films present a porous like-structure, which is due to the uncompensated bonds and oxidise easily in the presence of air. This behaviour is a problem when the films are used for solar cells or thin film transistors. For as gas detectors, the oxidation is a benefit, since the CO, H2 or O2 molecules replace the OH adsorbed group. In the present study we observe the behaviour of amorphous and nano-crystalline porous silicon thin films under the presence of ethanol, at room temperature. The data obtained reveal a change in the current values recorded by more than three orders of magnitude, depending on the film preparation condition. This current behaviour is due to the adsorption of the OH chemical group by the Si uncompensated bonds as can be observed in the infrared spectra. Besides that, the current response and its recover time are done in few seconds.
Ferreira, I., Águas Mendes Martins H. L. R. "
Role of the hot wire filament temperature on the structure and morphology of the nanocrystalline silicon p-doped films."
Applied Surface Science. 144-145 (1999): 690-696.
AbstractNanocrystalline p-doped silicon films were deposited at low substrate temperatures (around 200°C) in a hot wire reactor. In this paper we present the results on the role of the hydrogen dilution and filament temperature on the film's structure, composition, morphology and transport properties. The film's structure changes from honeycomb-like to a granular needle shape as the filament temperature changes from about 2000°C and hydrogen dilution 87%, to values above 2100°C and hydrogen dilution 90%, respectively. The nanocrystalline silicon-based films produced have optical gaps varying from 1.6 to 1.95 eV, with conductivities up to 0.2 S cm-1 and grain sizes (obtained by X-ray diffraction) in the range of 10-30 nm. © 1999 Elsevier Science B.V. All rights reserved.
Ferreira, I., Fernandes Vilarinho Fortunato Martins F. B. P. "
Properties of nano-crystalline n-type silicon films produced by hot wire plasma assisted technique."
Materials Research Society Symposium - Proceedings. Vol. 664. 2001. A761-A766.
AbstractIn this work, we present the properties of n-type silicon films obtained by hot wire plasma assisted technique produced at different rf power and gas flow rate. The films were produced at a filament temperature of 2000°C and the rf power was varied from 0 W to 200 W while gas flow rate was varied from 15 to 100 sccm keeping rf power at 50 W. In this flow rate range, the growth rate of the films varied from 5Å/s to 250Å/s and the corresponding electrical room dark conductivity varied from 10-2 to 10(Ωcm)-1. On the other hand, we observed that the electrical conductivity increased from 2 to 6(Ωcm)-1, and the Hall mobility from 0.1 to 2 cm2/V.s as rf power change from 0 W to 200 W. The infrared, EDS and XPS analyses revealed the existence of oxygen incorporation, which is not related to post-deposition oxidation. The X-ray diffraction and μRaman data show the presence of Si crystals in the films structure and the SEM micrographs reveal a granular surface morphology with grain sizes lower than 60 nm.
Ferreira, I.M.M., Cabrita Fortunato Martins A. M. F. E. "
N-type silicon films produced by hot wire technique."
Materials Research Society Symposium - Proceedings. Vol. 609. 2000. A651-A656.
AbstractThe role of the deposition pressure (p) and the type of filaments (tungsten, W or tantalum, Ta) used to produce large area (10cm×10cm) n-type Si:H films by hot wire chemical vapour (HW-CVD) deposition technique was investigated. The data show that the electro-optical properties of the films produced are dependent on the gas pressure used. In the pressure range of 1×10-3 Torr to 1.0 Torr, the room dark conductivity (σd) varies from 1×10-8 to 2 S/cm for films produced at the same hydrogen dilution and filament temperature (Tfil). On the other hand, the hydrogen concentration (CH) decreases from 10% to 2%, while the growth rate (R) shows an exponential increase, from 1 to 9 Å/s. The SIMS analysis, within the detection limits, does not reveal the existence of any significant W or Ta contamination in the films produced.
Ferreira, I., Aguas Mendes Fernandes Fortunato Martins H. L. F. "
Influence of the H2 dilution and filament temperature on the properties of P doped silicon carbide thin films produced by hot-wire technique."
Materials Research Society Symposium - Proceedings. Vol. 507. 1999. 831-836.
AbstractThis work deals with the role of hydrogen dilution and filament temperature on the morphology, structure and electrical properties of nanocrystalline boron doped silicon carbide thin films produced by hot-wire technique. The structural and morphological data obtained by XRD, SEM and micro-Raman show that for filament temperatures and hydrogen dilutions above 2100 °C and 90%, respectively, the surface morphology of the films is granular with a needle shape, while for lower filament temperatures and hydrogen dilutions the surface morphology gets honeycomb like. The SIMS analysis reveals that films produced with filament temperatures of about 2200 °C and hydrogen dilution of 99% present a higher hydrogen and carbon incorporation than the films produced at lower temperatures and hydrogen dilutions. These results agree with the electrical and optical characteristics recorded that show that the films produced exhibit optical gaps in the range from 1.8 to 2 eV and transverse conductivities ranging from 10-1 S/cm to 10-3 S/cm, consistent with the degree of films crystallinity and carbon incorporation recorded.