This paper reports on the use of cellulose paper simultaneously as electrolyte, separation of electrodes, and physical support of a rechargeable battery. The deposition on both faces of a paper sheet of metal or metal oxides thin layers with different electrochemical potentials, respectively as anode and cathode, such as Cu and Al, lead to an output voltage of 0.70 V and a current density that varies between 150 nA/cm2 and 0.5 mA/cm2, subject to the paper composition, thickness and the degree of OHx species adsorbed in the paper matrix. The electrical output of the paper battery is independent of the electrodes thickness but strongly depends on the atmospheric relative humidity (RH), with a current density enhancement by more than 3 orders of magnitude when RH changes from 60% to 85%. Besides flexibility, low cost, low material consumption, environmental friendly, the power output of paper batteries can be adapted to the desired voltagecurrent needed, by proper integration. A 3-V prototype was fabricated to control the ON/OFF state of a paper transistor. © 2006 IEEE.
cited By 20