Publications

Export 575 results:
Sort by: Author Title Type [ Year  (Asc)]
2008
Barquinha, P.a, Vila Gonçalves Pereira Martins Morante Fortunato A. M. b G. "Gallium-indium-zinc-oxide-based thin-film transistors: Influence of the source/drain material." IEEE Transactions on Electron Devices. 55 (2008): 954-960. AbstractWebsite

During the last years, oxide semiconductors have shown that they will have a key role in the future of electronics. In fact, several research groups have already presented working devices with remarkable electrical and optical properties based on these materials, mainly thin-film transistors (TFTs). Most of these TFTs use indium-tin oxide (ITO) as the material for source/drain electrodes. This paper focuses on the investigation of different materials to replace ITO in inverted-staggered TFTs based on gallium-indium-zinc oxide (GIZO) semiconductor. The analyzed electrode materials were indium-zinc oxide, Ti, Al, Mo, and Ti/Au, with each of these materials used in two different kinds of devices: one was annealed after GIZO channel deposition but prior to source/drain deposition, and the other was annealed at the end of device production. The results show an improvement on the electrical properties when the annealing is performed at the end (for instance, with Ti/Au electrodes, mobility rises from 19 to 25 cm2/V · s, and turn-on voltage drops from 4 to 2 V). Using time-of-flight secondary ion mass spectrometry (TOF-SIMS), we could confirm that some diffusion exists in the source/drain electrodes/ semiconductor interface, which is in close agreement with the obtained electrical properties. In addition to TOF-SIMS results for relevant elements, electrical characterization is presented for each kind of device, including the extraction of source/drain series resistances and TFT intrinsic parameters, such as VTi (intrinsic threshold voltage). © 2008 IEEE.

Pereira, L.a, Barquinha Fortunato Martins Kang Kim Lim Song Park P. a E. a. "High k dielectrics for low temperature electronics." Thin Solid Films. 516 (2008): 1544-1548. AbstractWebsite

In this work the electrical and structural properties of two high k materials as hafnium oxide (HfO2) and tantalum oxide (Ta2O5) produced at room temperature are exploited. Aiming low temperature processing two techniques were employed: r.f. sputtering and electron beam evaporation. The sputtered HfO2 films present a nanocrystalline structure when deposited at room temperature. The same does not happen for the evaporated films, which are essentially amorphous. The density and the electrical performance of both sputtered and evaporated films are improved after annealing them at 200 °C. On the other hand, the Ta2O5 samples deposited at room temperature are always amorphous, independently of the technique used. The density and electrical performance are not so sensitive to the annealing process. The set of data obtained show that these dielectrics processed at temperatures below 200 °C present promising properties aiming to produce devices at low temperature with improved interface properties and reduced leakage currents. © 2007 Elsevier B.V. All rights reserved.

Fortunato, E., Barquinha Gonçalves Pereira Martins P. G. L. "High mobility and low threshold voltage transparent thin film transistors based on amorphous indium zinc oxide semiconductors." Solid-State Electronics. 52 (2008): 443-448. AbstractWebsite

Staggered bottom gate transparent thin film transistors (TTFTs) have been produced by rf magnetron sputtering at room temperature, using amorphous indium zinc oxide (IZO) semiconductor, for the channel as well as for the drain and source regions. The obtained TTFTs operate in the enhancement mode with threshold voltages of 2.4 V, saturation mobility of 22.7 cm2/V s, gate voltage swing of 0.44 V/dec and an ON/OFF current ratio of 7 × 107. The high performances presented by these TTFTs produced at room temperature, make these TFTs a promising candidate for flexible, wearable, disposable portable electronics as well as battery-powered applications. © 2007 Elsevier Ltd. All rights reserved.

Fortunato, E.a, Pereira Barquinha Botelho Do Rego Gongalves Vilà Morante Martins L. a P. a. "High mobility indium free amorphous oxide based thin film transistors." Proceedings of International Meeting on Information Display. Vol. 8. 2008. 1199-1202. Abstract

High mobility bottom gate thin film transistors (TFTs) with an amorphous gallium tin zinc oxide (a-GSZO) channel layer have been produced by rf magnetron cosputtering using a gallium zinc oxide (GZO) and tin (Sn) targets. The effect of the post annealing temperatures (200 °C, 250 °C and 300 °C) was evaluated and compared with two series of TFTs produced at room temperature and 150 °C during the channel deposition. From the results it was observed that the effect ofpos annealing is crucial for both series of TFTs either for stability as well as for improving the electrical characteristics. The a-GSZO TFTs operate in the enhancement mode (n-type), present a high saturation mobility of 24.6 cm2/Vs, a subthreshold gate swing voltage of 0.38 V/decade, a turn-on voltage of -0.5 V, a threshold voltage of 4.6 V and an ION/IOFF ratio of 8x107, satisfying all the requirements to be used in active-matrix backplane.

Fortunato, E.M.C.a, Pereira Barquinha Botelho Do Rego Goņalves Vil̀ Morante Martins L. M. N. a. "High mobility indium free amorphous oxide thin film transistors." Applied Physics Letters. 92 (2008). AbstractWebsite

High mobility bottom gate thin film transistors (TFTs) with an amorphous gallium tin zinc oxide (a-GSZO) channel layer have been produced by rf magnetron cosputtering using a gallium zinc oxide (GZO) and tin (Sn) targets. The effect of postannealing temperatures (200, 250, and 300 °C) was evaluated and compared with two series of TFTs produced at room temperature (S1) and 150 °C (S2) during the channel deposition. From the results, it was observed that the effect of postannealing is crucial for both series of TFTs either for stability as well as for improving the electrical characteristics. The a-GSZO TFTs (WL=5050 μm) operate in the enhancement mode (n -type), present a high saturation mobility of 24.6 cm2 V s, a subthreshold gate swing voltage of 0.38 V /decade, a turn-on voltage of -0.5 V, a threshold voltage of 4.6 V, and an Ion Ioff ratio of 8× 107, satisfying all the requirements to be used as active-matrix backplane. © 2008 American Institute of Physics.

Parthiban, S.a, Ramamurthi Elangovan Martins Fortunato Ganesan K. a E. b. "High-mobility molybdenum doped indium oxide thin films prepared by spray pyrolysis technique." Materials Letters. 62 (2008): 3217-3219. AbstractWebsite

Molybdenum doped indium oxide (IMO) thin films were deposited on the glass substrates preheated to 450 °C by spray pyrolysis technique. The Mo doping was varied between 0 and 2.0 at.%. The films were characterized by their structural, electrical and optical properties. The films are confirmed to be cubic bixbyite In2O3 with a strongest orientation along (222) plane, which is shifted to (400) plane for the increase in Mo doping to 1.25 and 2 at.%. The film deposited with 0.5 at.% Mo doping shows high mobility of 76.9 cm2V- 1s- 1 , resistivity of 1.8 × 10- 3 Ω-cm and high carrier concentration of 4.6 × 1019 cm- 3 with 81.3% transmittance in the visible range between 500 and 800 nm. Further, the transparency extents well into the near-IR range. © 2008 Elsevier B.V. All rights reserved.

Fortunato, E., Correia Barquinha Pereira Goncalves Martins N. P. L. "High-performance flexible hybrid field-effect transistors based on cellulose fiber paper." IEEE Electron Device Letters. 29 (2008): 988-990. AbstractWebsite

In this letter, we report for the first time the use of a sheet of cellulose-fiber-based paper as the dielectric layer used in oxide-based semiconductor thin-film field-effect transistors (FETs). In this new approach, we are using the cellulose-fiber-based paper in an "interstrate"structure since the device is built on both sides of the cellulose sheet. Such hybrid FETs present excellent operating characteristics such as high channel saturation mobility (> 30 cm2Vs), drain-source current on/off modulation ratio of approximately 104, near-zero threshold voltage, enhancement n-type operation, and subthreshold gate voltage swing of 0.8 V/decade. The cellulose-fiber-based paper FETs' characteristics have been measured in air ambient conditions and present good stability, after two months of being processed. The obtained results outpace those of amorphous Si thin-film transistors (TFTs) and rival with the same oxide-based TFTs produced on either glass or crystalline silicon substrates. The compatibility of these devices with large-scale/large-area deposition techniques and low-cost substrates as well as their very low operating bias delineates this as a promising approach to attain high-performance disposable electronics like paper displays, smart labels, smart packaging, RFID, and point-of-care systems for self-analysis in bioapplications, among others. © 2008 IEEE.

Fortunato, E., Raniero Siva Gonçalves Pimentel Barquinha Águas Pereira Gonçalves Ferreira Elangovan Martins L. L. A. "Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications." Solar Energy Materials and Solar Cells. 92 (2008): 1605-1610. AbstractWebsite

Transparent and highly conducting gallium zinc oxide (GZO) films were successfully deposited by RF sputtering at room temperature. A lowest resistivity of∼2.8 × 10-4 ωcm was achieved for a film thickness of 1100nm (sheet resistance ∼2.5ω/□), with a Hall mobility of 18cm2/Vs and a carrier concentration of 1.3 × 1021 cm-3. The films are polycrystalline with a hexagonal structure having a strong crystallographic c-axis orientation. A linear dependence between the mobility and the crystallite size was obtained. The films are highly transparent (between 80% and 90% including the glass substrate) in the visible spectra with a refractive index of about 2, very similar to the value reported for the bulk material. These films were applied to single glass/TCO/pin hydrogenated amorphous silicon solar cells as front layer contact, leading to solar cells with efficiencies of about 9.52%. With the optimized deposition conditions, GZO films were also deposited on polymer (PEN) substrates and the obtained results are discussed. © 2008 Elsevier B.V. All rights reserved.

d c Martins, R.a, Baptista Silva Raniero Doria Franco Fortunato P. b L. a. "Identification of unamplified genomic DNA sequences using gold nanoparticle probes and a novel thin film photodetector." Journal of Non-Crystalline Solids. 354 (2008): 2580-2584. AbstractWebsite

This paper describes a novel colorimetric method for detection of nucleic acid targets in a homogeneous format with improved sensitivity by means of a system based on the combination of a tunable monochromatic light source and an amorphous/nanocrystalline silicon photodetector that detects color and light intensity changes undergone by samples/assays containing tailored gold nanoparticles probes. This new low cost, portable, fast and simple optoelectronic platform, with the possibility to be re-used, permits detection of at least 400 fentomole of specific DNA sequences without target or signal amplification and was applied to the rapid detection of human pathogens in large variety of clinical samples such as Mycobacterium tuberculosis. © 2008 Elsevier B.V. All rights reserved.

Wang, J.a, Elamurugu Sallet Lusson Amiri Jomard Martins Fortunato E. a V. b. "Influence of different carrier gases on the properties of ZnO films grown by MOCVD." Boletin de la Sociedad Espanola de Ceramica y Vidrio. 47 (2008): 242-244. AbstractWebsite

ZnO films were grown on sapphire (001) substrate by atmospheric MOCVD using diethyl zinc and tertiary butanol precursors. The influence of different carrier gases (H2 and He) on the properties was analyzed by their structural (XRD), microstructural (SEM) and compositional (SIMS) characterization. The intensity of the strongest diffraction peak from ZnO (002) plane was increased by about 2 orders of magnitude when He is used as carrier gas, indicating the significant enhancement in crystallinity. The surface of the samples grown using H2 and He carrier gases was composed of leaf-like and spherical grains respectively. Hydrogen [H] content in the film grown using H2 is higher than that using He, indicating that the [H] was influenced by the H2 carrier gas. Ultraviolet emission dominates the low temperature PL spectra. The emission from ZnO films grown using He show higher optical quality and more emission centers.

Cui, H.-N.a, Teixeira Meng Martins Fortunato V. a L. -. "Influence of oxygen/argon pressure ratio on the morphology, optical and electrical properties of ITO thin films deposited at room temperature." Vacuum. 82 (2008): 1507-1511. AbstractWebsite

Transparent conductive oxides (TCOs) such as indium tin oxide (ITO) thin films onto glass substrates are widely used as transparent and conductive electrodes for a variety of technological applications including flat panel displays, solar cells, smart windows, touch screens, etc. ITO films on glass and polycarbonate (PC) substrates were prepared at room temperature (RT) and at different PO2. The films were characterized in terms of the surface roughness (δ), sheet resistance, the refractive index (n) and extinction coefficient (k). The free carrier density (nc) and the carrier mobility (μ) of the ITO (In2O3:Sn) films were measured and studied. The nc and μ values vary in different ratio of oxygen partial pressure (PO2) of ITO deposition. The observed changes in the ITO film resistivity are due to the combined effect of different parameter values for nc and μ. From AFM analysis and spectra calculations, the surface roughness values of the ITO films were studied and it was observed that the δ values were lower than 15 nm. The energy band gap Eg ranges from 3.26 eV to 3.66 eV as determined from the absorption spectrum. It was observed an increase on the energy band gap as the PO2 decrease in the range of 20-2% PO2. The Lorentz oscillator classical model has also been used to fit the ellipsometric spectra in order to obtain both refractive index n and extinction coefficient κ values. © 2008 Elsevier Ltd. All rights reserved.

Prabakaran, R., Silva Fortunato Martins Ferreira L. E. R. "Investigation of hydrocarbon coated porous silicon using PECVD technique to detect CO2 gas." Journal of Non-Crystalline Solids. 354 (2008): 2610-2614. AbstractWebsite

In the present work, we investigate the influence of hydrocarbon (CHx) thin film coating on porous silicon (PS) by plasma enhanced chemical vapor deposition (PECVD) technique to detect CO2 gas. The fabricated CHx/PS heterojunction device shows up to one and two orders of magnitude enhancement in current under CO2 gas exposure. FTIR spectroscopy measurements reveal a remarkable structural modification of the CHx/PS device during CO2 gas exposure. Further, the enhancement of CHx related absorbance bands by a factor 6.2 for the CHx/PS specimen in comparison with PS confirm the good quality of the deposited CHx thin films. © 2007 Elsevier B.V. All rights reserved.

Pereira, L., Barquinha Fortunato Martins P. E. R. "Low temperature high k dielectric on poly-Si TFTs." Journal of Non-Crystalline Solids. 354 (2008): 2534-2537. AbstractWebsite

In this work, it is demonstrated the application of a high k dielectric, as hafnium oxide (HfO2), in poly-Si thin film transistors (TFTs) obtained by metal induced lateral crystallization (MILC). The dielectric layer was deposited at room temperature by sputtering, using argon and oxygen as process gases. As produced TFTs exhibit field effect mobility around 45 cm2 V-1 s-1and Ion/Ioff ratio of about 2 × 105. After annealing in a forming gas atmosphere for about 1 h at 200 °C, the threshold voltage and the sub-threshold slope are reduced, respectively from 4.8 to 2 V and from 1.6 to 1.4 V/dec. Nevertheless, by doing so, we notice a reduction on the field effect mobility of about 45% and a decrease of about 2.5 times on the Ion/Ioff ratio. Longer annealing time will not improve the TFT's performance. © 2008 Elsevier B.V. All rights reserved.

Pereira, L.a, Águas Beckers Martins Fortunato Martins H. a M. b. "Metal contamination detection in nickel induced crystallized silicon by spectroscopic ellipsometry." Journal of Non-Crystalline Solids. 354 (2008): 2319-2323. AbstractWebsite

In this paper a new approach is presented for the simulation of spectroscopic ellipsometry (SE) data to estimate the level of nickel (Ni) contamination in silicon crystallized by metal induced crystallization (MIC). The method employs the addition of Ni as reference for a Bruggemann effective medium approximation (BEMA) to simulate the optical response of the crystallized silicon. This new approach is sensitive to changes in the initial average metal thickness used on the crystallization process to thickness values as low as 0.05 nm. This corresponds to a volume fraction of 0.24%, confirmed by Rutherford backscattering spectrometry (RBS) where it was observed that the Ni volume fraction detected by SE varies linearly with the metal amount inside the crystallized films determined by RBS. © 2008.

Prabakaran, R., Aguas Fortunato Martins Ferreira H. E. R. "n-PS/a-Si:H heterojunction for device application." Journal of Non-Crystalline Solids. 354 (2008): 2632-2636. AbstractWebsite

In this work, we investigate the role of amorphous silicon (a-Si:H) thin films deposited by a plasma enhanced chemical vapor deposition (PECVD) technique on porous silicon (PS) to facilitate its water vapor and oxygen gas sensing properties using its electrical response. Overall we notice a rectifying behavior from a-Si:H/PS heterojunction device, where a current enhancement of one and four orders of magnitude was observed in the presence of oxygen gas and water vapor, in comparison with atmospheric air at room temperature, respectively. The photoluminescence (PL) investigation of PS shows a slight blue shift in the PL emission band from 1.72 to 1.77 eV and the intensity of the PL is enhanced by a factor of 5.4 with increase of porosity from 21% to 77%. This PL emission may originate from the O-Si-H related absorbance bands. Alternatively, quenching of the PL intensity was observed after a-Si:H films were deposited on PS specimens. Besides, micro-Raman and atomic force microscopic (AFM) analyse were carried out to understand the structure and morphological features of the PS and a-Si:H/PS specimens. © 2007 Elsevier B.V. All rights reserved.

Fortunato, E., Barquinha Gonçalves Pereira Martins P. G. L. "New amorphous oxide semiconductor for thin film transistors (TFTs)." Materials Science Forum. 587-588 (2008): 348-352. AbstractWebsite

Thin film transistors (TFTs) have been produced by rf magnetron sputtering at room temperature, using non conventional oxide materials like amorphous indium-zinc-oxide (IZO) semiconductor, for the channel as well as for the drain and source regions. The obtained TFTs operate in the enhancement mode with threshold voltages of 2.4 V, saturation mobility of 22.7 cm2/Vs, gate voltage swing of 0.44 V/dec and an ON/OFF current ratio of 7×10 7. The high performances presented by these TFTs associated to a high electron mobility, at least two orders of magnitude higher than that of conventional amorphous silicon TFTs and a low threshold voltage, opens new doors for applications in flexible, wearable, disposable portable electronics as well as battery-powered applications.

Prabakaran, R., Aguas Pereira Elangovan Fortunato Martins Ferreira H. L. E. "Optical and microstructural investigations of porous silicon coated with a-Si:H using PECVD technique." Materials Science Forum. 587-588 (2008): 308-312. AbstractWebsite

In the present work, the spectroscopic ellipsometry (1.5 - 5.5 eV) was used to investigate the effects of current density induced microstructural variations and their influence on the electronic states of as-prepared and a-Si:H coated porous silicon (PS). The pseudodielectric responses of the low and high current densities (5 and 40 mA/cm2) were analyzed using a multilayer model within the effective medium approximation. The FTIR investigation reveals me enhancement of surface oxide (Si-Ox) layer with current density and the improvement of the Si-Hx band after a-Si:H coating.

Barquinha, P.a, Vila Gonçalves Pereira Martins Morante Fortunate A. b G. a. "The role of source and drain material in the performance of GIZO based thin-film transistors." Physica Status Solidi (A) Applications and Materials Science. 205 (2008): 1905-1909. AbstractWebsite

Indium tin oxide (ITO) has been used as the prefered electrode material for the emerging area of transparent electronics, namely for thin-film transistors (TFTs) based on oxide semiconductors. This work pretends to investigate different materials to replace ITO in inverted-staggered TFTs based on gallium-indium-zinc oxide (GIZO), one of the most promissing oxide semiconductors for TFTs. The analyzed electrode materials are indium-zinc oxide (IZO), Ti, Mo and Ti/Au. Devices are analyzed with special focus on the contact resistance fundamentals, including the extraction of source/ drain series resistances and TFTs intrinsic parameters, such as intrinsic mobility (p\) and intrinsic threshold voltage (V Ti). The obtained contact resistance values are between 10 kΩ and 20 kΩ, and the best devices have field effect mobility ((μ FE) close to 25 cm 2/V s and on/off ratio close to 10 8. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

Elangovan, E.a, Marques Viana Martins Fortunato A. a A. S. "Some studies on highly transparent wide band gap indium molybdenum oxide thin films rf sputtered at room temperature." Thin Solid Films. 516 (2008): 1359-1364. AbstractWebsite

Transparent wide band gap indium molybdenum oxide (IMO) thin films were rf sputtered on glass substrates at room temperature. The films were studied as a function of sputtering power (ranging 40-180 W) and sputtering time (ranging 2.5-20 min). The film thickness was varied in the range 50-400 nm. The as-deposited films were characterized by their structural (XRD), morphological (AFM), electrical (Hall Effect measurements) and optical (visible-NIR spectroscopy) properties. XRD studies revealed that the films are amorphous for the sputtering power ≤ 100 W and the deposition time ≤ 5 min, and the rest are polycrystalline with a strong reflection from (222) plane showing a preferential orientation. A minimum bulk resistivity of 2.65 × 10- 3 Ω cm and a maximum carrier concentration of 4.16 × 1020 cm- 3 are obtained for the crystalline films sputtered at 180 W (10 min). Whereas a maximum mobility (19.5  cm2 V- 1 s- 1) and average visible transmittance (∼ 85%) are obtained for the amorphous films sputtered at 80 W and 100 W respectively for 10 min. A minimum transmittance (∼ 18%) was obtained for the crystalline films sputtered at 180 W (∼ 305 nm thick). The optical band gap was found varying between 3.75 and 3.90 eV for various sputtering parameters. The obtained results are analyzed and corroborated with the structure of the films. © 2007 Elsevier B.V. All rights reserved.

Fernandes, M.a, Vygranenko Fantoni Martins Vieira Y. a A. a. "Spectral response characterization of a-Si:H-based MIS-type photosensors." Physica Status Solidi (C) Current Topics in Solid State Physics. 5 (2008): 3410-3413. AbstractWebsite

This paper reports on a method and a test setup developed to measure the transient dark current and the spectral response characteristics of a-Si:H MIS photosensors. Using this method the segmented-gate/SiNx/a Si:H/n +/ITO structures have been characterized under different biasing conditions. The dependences of the dark and light signals on the refresh pulse amplitude, offset voltage and pulse width were measured and analyzed. It is found that the amplitude of the time-dependent component of the leakage current associated with charge trapping at the insulator-semiconductor interface can be significantly reduced by adjusting the offset voltage. The observed bias dependence of the spectral response characteristics is explained by analyzing the charge carrier transport in the absorption layer at different wavelengths of the incident light. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

Águas, H.a, Popovici Pereiraa Conde Branford Cohen Fortunato Martins N. b L. "Spectroscopic ellipsometry study of Co-doped TiO 2 films." Physica Status Solidi (A) Applications and Materials Science. 205 (2008): 880-883. AbstractWebsite

Co-doped TiO 2 films were characterized by spectroscopic ellipsometry to determine their thickness, deposition rate and optical properties as function of substance temperature and background gas composition. To fit the data we used a combination of a single Tauc-Lorentz oscillator with the Drude free electron model to take in account the free electrons present in the film. The Co doping and addition of H 2 to the gas phase during film growth cause the formation of a titanium oxide which containsfree electrons that absorb the energy of the red part of the spectrum, causing k to increase. The n of the film at 1.5 eV is about 2.3 eV. The fittings also show that the n of films decreases and k increase at the surface. This can be related to a segregation of Co to the surface, which in some cases, of high substrate temperature and high H 2 flow during deposition, can lead to and even higher concentration of free electrons at the surface. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

Águas, H., Silva Viegas Pereira Fortunato Martins R. J. C. M. "Study of environmental degradation of silver surface." Physica Status Solidi (C) Current Topics in Solid State Physics. 5 (2008): 1215-1218. AbstractWebsite

To evaluate the evolution of a dark film formation on silver surface objects, several coupons were catalogued and place inside a museum, located in an urban area. The changes on these samples were measured by spectroscopic ellipsometry, in periods of months. This technique allows the reduction of the coupons exposure time, in several months, due to its high sensitivity to surface modifications, with acceptable results for the evaluation of its degradation. The thicknesses of the degradation layers and the optical properties of silver oxide, chloride and sulphide reference samples were determined using a mixture of Tauc-Lorentz and Drude models. The composition of the silver corrosion layer was determined by fitting the layer using a Bruggeman Effective Medium Approximation (BEMA) of the three products plus voids. It was found that the thickness of the layer depends in the placement of the coupons, namely, inside or outside displayers. The average film thickness after 6 months was of 180 Å and 280 Å, inside and outside the displayers, respectively. The main compounds found in the layers were the silver chlorides and sulphides, which composition changed with the thickness of the layer, and the exposition time. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.

Martins, R., Barquinha Pereira Correia Goņalves Ferreira Fortunato P. L. N. "Write-erase and read paper memory transistor." Applied Physics Letters. 93 (2008). AbstractWebsite

We report the architecture and the performances of a memory based on a single field-effect transistor built on paper able to write-erase and read. The device is composed of natural multilayer cellulose fibers that simultaneously act as structural support and gate dielectric; active and passive multicomponent amorphous oxides that work as the channel and gate electrode layers, respectively, complemented by the use of patterned metal layers as source/drain electrodes. The devices exhibit a large counterclockwise hysteresis associated with the memory effect, with a turn-on voltage shift between 1 and -14.5 V, on/off ratio and saturation mobilities of about 104 and 40 cm 2 V-1 s-1, respectively, and estimated charge retention times above 14 000 h. © 2008 American Institute of Physics.

2009
Figueiredo, V.a, Elangovan Gonçalves Franco Alves Park Martins Fortunato E. a G. a. "Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature." Physica Status Solidi (A) Applications and Materials Science. 206 (2009): 2143-2148. AbstractWebsite

Copper oxide thin films were obtained by annealing (temperature ranging between 100 and 450 °C) the metallic Cu films deposited on glass substrates by e-beam evaporation. XRD studies confirmed that the cubic Cu phase of the asdeposited films changes into single cubic Cu 2Ophase and single monoclinic CuO phase, depending on the annealing conditions. The crystallite size is varied betweeñ12 and 31 nm. The lattice parameters of cubic Cu and Cu 2Ophases are estimated tõ3.60 and ̃4.26 Å , respectively. The films with Cu 2O phase showed p-type characteristics. The conductivity is decreased linearly with the decreasing temperature (1/T), which has confirmed the semiconductor nature of the deposited films. The calculated activation energy is varied between 0.10 and 0.16 eV. The surface microstructure is changed depending on the variation in the annealing temperature. The poor transmittance of the asdeposited films (<1%) is increased to a maximum of ̃80% (800 nm) on annealing at 200 °C. The estimated direct allowed band gap is varied between 1.73 and 2.89 eV. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Rozati, S.M.a, Moradi Golshahi Martins Fortunato S. a S. a. "Electrical, structural and optical properties of fluorine-doped zinc oxide thin films: Effect of the solution aging time." Thin Solid Films. 518 (2009): 1279-1282. AbstractWebsite

In this paper ageing effects of the solution used to prepare fluorine-doped ZnO films by the spray pyrolysis technique were investigated, concerning its role on the structure, the electrical and optical properties of films produced. The data reveal that the sheet resistance of the ZnO:F thin film decreases with the age of the solution used, reaching a minimum of 24 Ω/□, after 15 days. On the other hand the optical transmittance increases for films deposited using 6 days aging solution, decreasing afterwards as the aging time increases, being the optical transmittance in the visible range below 55%, for films deposited from solutions 36 days in age. The X-ray diffraction spectra show that the aged films are polycrystalline in nature with a [100] predominant orientation. The data also show that the intensity of (100) peak increases as the time of solution age increases, which is related to an improvement of the film crystallinity. © 2009 Elsevier B.V. All rights reserved.