ZnO films were grown on sapphire (001) substrate by atmospheric MOCVD using diethyl zinc and tertiary butanol precursors. The influence of different carrier gases (H2 and He) on the properties was analyzed by their structural (XRD), microstructural (SEM) and compositional (SIMS) characterization. The intensity of the strongest diffraction peak from ZnO (002) plane was increased by about 2 orders of magnitude when He is used as carrier gas, indicating the significant enhancement in crystallinity. The surface of the samples grown using H2 and He carrier gases was composed of leaf-like and spherical grains respectively. Hydrogen [H] content in the film grown using H2 is higher than that using He, indicating that the [H] was influenced by the H2 carrier gas. Ultraviolet emission dominates the low temperature PL spectra. The emission from ZnO films grown using He show higher optical quality and more emission centers.
cited By 1