Publications

Export 109 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
Z
Martins, R.a, Fortunato Nunes Ferreira Marques Bender Katsarakis Cimalla Kiriakidis E. a P. a. "Zinc oxide as an ozone sensor." Journal of Applied Physics. 96 (2004): 1398-1408. AbstractWebsite

A study of intrinsic zinc oxide thin film as ozone sensor based on the ultraviolet (UV) photoreduction and subsequent ozone re oxidation of zinc oxide as a fully reversible process was presented. It was found that the film described were produced by spray pyrolysis, dc and rf magnetron sputtering. The dc resistivity of the films changed more than eight orders of magnitude when exposed to an UV dose of 4 mW/cm2. Analysis shows that the porous and textured zinc oxide films produced by spray pyrolysis at low substrate exhibit an excellent ac impedance response.

Martins, R., Pereira Barquinha Ferreira Prabakaran Gonçalves Gonçalves Fortunato L. P. I. "Zinc oxide and related compounds: Order within the disorder." Proceedings of SPIE - The International Society for Optical Engineering. Vol. 7217. 2009. Abstract

This paper discusses the effect of order and disorder on the electrical and optical performance of ionic oxide semiconductors based on zinc oxide. These materials are used as active thin films in electronic devices such as pn heterojunction solar cells and thin-film transistors. Considering the expected conduction mechanism in ordered and disordered semiconductors the role of the spherical symmetry of the s electron conduction bands will be analyzed and compared to covalent semiconductors. The obtained results show p-type c-Si/a-IZO/poly-ZGO solar cells exhibiting efficiencies above 14% in device areas of about 2.34 cm2. Amorphous oxide TFTs based on the Ga-Zn-Sn-0 system demonstrate superior performance than the polycrystalline TFTs based on ZnO, translated by ION/IOFF ratio exceeding 107, turn-on voltage below 1-2 V and saturation mobility above 25 cm2/Vs. Apart from that, preliminary data on p-type oxide TFT based on the Zn-Cu-O system will also be presented. © 2009 SPIE.

W
Martins, R., Barquinha Pereira Correia Goņalves Ferreira Fortunato P. L. N. "Write-erase and read paper memory transistor." Applied Physics Letters. 93 (2008). AbstractWebsite

We report the architecture and the performances of a memory based on a single field-effect transistor built on paper able to write-erase and read. The device is composed of natural multilayer cellulose fibers that simultaneously act as structural support and gate dielectric; active and passive multicomponent amorphous oxides that work as the channel and gate electrode layers, respectively, complemented by the use of patterned metal layers as source/drain electrodes. The devices exhibit a large counterclockwise hysteresis associated with the memory effect, with a turn-on voltage shift between 1 and -14.5 V, on/off ratio and saturation mobilities of about 104 and 40 cm 2 V-1 s-1, respectively, and estimated charge retention times above 14 000 h. © 2008 American Institute of Physics.

U
Malik, A., Martins R. "UV enhanced and solar blind photodetectors based on large-band-gap materials." Materials Science Forum. 258-263 (1997): 1425-1430. AbstractWebsite

High quantum efficiency, UV-enhanced monocrystalline zinc sulphide optical sensors for precise radiometric and spectroscopic measurements have been developed by spray deposition of heavy fluorinedoped tin oxide thin films with carrier concentration near 1021 cm-3 onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced silicon photodetectors as well as to new detectors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that was nearly 100% from 250 to 320 nm, and the typical sensitivity at 290 nm is 0.15 A/W. The sensors were insensitive to solar radiation in earth's conditions and can be used as solar blind photodetectors for precision UV-measurements under direct solar illumination, both terrestrial and space applications.

T
Martins, R.a, Vieira Ferreira Fortunato Guimarães M. b I. a. "Transport properties of doped silicon oxycarbide microcrystalline films produced by spatial separation techniques." Solar Energy Materials and Solar Cells. 41-42 (1996): 493-517. AbstractWebsite

This paper presents results of the role of the oxygen partial pressure used during the deposition process on the transport properties exhibited by doped microcrystalline silicon oxycarbide films produced by a Two Consecutive Decomposition and Deposition Chamber system, where a spatial separation between the plasma and the growth regions is achieved. This paper also presents the interpretative models of the optoelectronic behaviour observed in these films (highly conductive and transparent with suitable properties for optoelectronic applications) as well as the interpretation of the growth process that leads to film's microcrystallization.

Martins, Rodrigo, Vieira Manuela Ferreira Isabel Fortunato Elvira Guimaraes L. "Transport properties of doped silicon oxycarbide microcrystalline films produced by spatial separation techniques." Conference Record of the IEEE Photovoltaic Specialists Conference. Vol. 1. 1994. 508-511. Abstract

This paper presents results of the role of the oxygen partial pressure (pO2) used on the properties exhibited by doped μc silicon oxycarbide films produced by a Two Consecutive Decomposition and Deposition Chamber (TCDDC) system [1], where a spatial separation between the plasma and the growth regions is achieved. The films produced are highly conductive and transparent with suitable properties for optoelectronic applications.

Martins, R.a, Willeke Fortunato Ferreira Vieira Santos Maçarico Guimarães G. b E. a. "Transport in μc-Six:Cy:Oz:H films prepared by a TCDDC system." Journal of Non-Crystalline Solids. 114 (1989): 486-488. AbstractWebsite

N- and p-type weakly absorbing and highly conductive microcrystalline thin μc-Six:Cy:Oz:H films, have been produced by a TCDDC (Two Consecutive Decomposition and Deposition Chamber) system1. The optoelectronic and structural results show that we are in the presence of a mixed phase of Si microcrystals (c-islands) embedded in a-Six:Cy:Oz:H (a-tissue). Based on that, we propose a model where transport mechanisms are explained by the potential fluctuations related to films heterogeneities. Thus, conduction is due to carriers that by tunneling or percolation "pass" or "go" trough the barriers and/or percolate randomly by the formed channels. © 1989.

Martins, R., Barquinha Pimentel Pereira Fortunato P. A. L. "Transport in high mobility amorphous wide band gap indium zinc oxide films." Physica Status Solidi (A) Applications and Materials Science. 202 (2005): R95-R97. AbstractWebsite

This paper discusses the electron transport in the n-type amorphous indium-zinc-oxygen system produced at room temperature by rf magnetron sputtering, under different oxygen partial pressures. The data show that the transport is not band tail limited, as it happens in conventional disordered semiconductors, but highly dependent on its ionicity, which explains the very high mobilities (≥ 60 cm 2 V -1 s -1) achieved. The room temperature dependence of the Hall mobility on the carrier concentration presents a reverse behaviour than the one observed in conventional crystalline/polycrystalline semiconductors, explained mainly by the presence of charged structural defects in excess of 4 × 10 10 cm -2 that scatter the electrons that pass through them. © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Martins, R., A̧guas Ferreira Fortunato Guimares H. I. E. "Towards the improvement of the stability of a-Si:H pin devices." Solar Energy. 69 (2000): 257-262. AbstractWebsite

This paper deals with a new process to improve the stability of a-Si:H pin solar cells deposited in a single batch process by proper passivation of the interfaces. The process consists in removing partially a deposited sacrificial oxide layer grown between the p/i or i/n interfaces by SF6 etching. This layer is an absorber of defects and impurities that are introduced in the interfaces, mainly from the chamber walls and the substrate surface. The results achieved in laboratory samples lead to devices in which the fill factor and short circuit current density were improved respectively towards 75% and 16.5 mA cm-2, with a final working efficiency of about 9.5%. © 2001 Elsevier Science Ltd. All rights reserved.

Martins, R., Fantoni Vieira A. M. "Tailoring defects on amorphous silicon pin devices." Journal of Non-Crystalline Solids. 164-166 (1993): 671-674. AbstractWebsite

This paper deals with a new model and structure able to tailor defects in pin devices. The model assumes the usual density of states profile, including donor and acceptor like states inside the mobility gap and has the capability to simulate the transient and steady state device behavior. The new structure is based in two interfacial defectous layers, located at the junctions, acting as "gettering" centers to tailor the defects. The role of the interlayer and its thickness on device performances will be also discussed. © 1993.

S
Mei, S., Yang Monteiro Martins Ferreira J. R. R. "Synthesis, characterization, and processing of cordierite-glass particles modified by coating with an alumina precursor." Journal of the American Ceramic Society. 85 (2002): 155-160. AbstractWebsite

The surfaces of cordierite and glass particles were modified by coating them with an alumina precursor using a precipitation process in the presence of urea. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy, X-ray diffraction, electrophoresis, and rheological measurements were used to characterize the coated powders. SEM and transmission electron microscopy morphologies of the coated powders revealed that amorphous and homogeneous coatings have been formed around the particles. The morphology of the coated powders showed a coiled wormlike surface. The coating Al2O3 layer dominated the surface properties of the coated glass and cordierite powders. The influence of the coating layer on the processing ability of cordierite-based glass-ceramics substrates by tape casting was studied in aqueous media. It could be concluded that the coating of the powders facilitates the processing and yields green and sintered tapes with denser, more homogeneous microstructures compared with the uncoated powders.

Meng, L., Macarico Martins A. R. "Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering." Materials Research Society Symposium - Proceedings. Vol. 388. 1995. 379-384. Abstract

Tin doped indium oxide (ITO) films were deposited on glass substrates by rf reactive magnetron sputtering using a metallic alloy target (In-Sn, 90-10). The post-deposition annealing has been done for ITO films in air and the effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. It has been found that the increase of the annealing temperature will improve the film electrical properties. The resistivity of as-deposited film is about 1.3×10-1 Ω* cm and decreases down to 6.9×10-3 Ω* cm as the annealing temperature is increased up to 500°C. In addition, the annealing will also increase the film surface roughness which can improve the efficiency of amorphous silicon solar cells by increasing the amount of light trapping.

Meng, L.-j., Maçarico Martins A. R. "Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering." Vacuum. 46 (1995): 673-680. AbstractWebsite

Tin doped indium oxide (ITO) films were deposited on glass substrates by rf reactive magnetron sputtering using a metallic alloy target (In-Sn, 90-10). The post-deposition annealing has been done for ITO films in air and the effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. It has been found that the increase of the annealing temperature will improve the film electrical properties. The resistivity of as deposited film is about 1.3 × 10-1 gW*cm and decreases down to 6.9 × 10-3 Ω*cm as the annealing temperature is increased up to 500 °C. In addition, the annealing will also increase the film surface roughness which can improve the efficiency of amorphous silicon solar cells by increasing the amount of light trapping. © 1995.

Martins, R., Maçarico Vieira Ferreira Fortunato A. M. I. "Structure, composition and electro-optical properties of n-type amorphous and microcrystalline silicon thin films." Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties. 76 (1997): 249-258. AbstractWebsite

This paper deals with the structure, composition and electro-optical characteristics of n-type amorphous and microcrystalline silicon thin films produced by plasma-enhanced chemical vapour deposition in a hydrogenhelium mixture. In addition, special emphasis is given to the role that hydrogen incorporation plays in the film's properties and in the characteristics of n-type microcrystalline films presenting simultaneously optical gaps of about 2·3 eV (controlled by the hydrogen content in the film), a dark conductivity of 6-5S cm-1 and a Hall mobility of about 0·86 cm2 V-1 s-1, the highest combined values for n-type microcrystalline silicon films, as far as we know.

Martins, R., Vieira Ferreira Fortunato M. I. E. "Structure and composition of doped silicon oxycarbide microcrystalline layers produced by spatial separation techniques." Materials Research Society Symposium - Proceedings. Vol. 358. 1995. 787-792. Abstract

This work presents experimental data concerning the role of the oxygen partial pressure used during the preparation process, on the structure, composition and optoelectronic properties of wide band gap doped microcrystalline silicon oxycarbide films produced by a TCDDC system [1].

Martins, R., Fortunato E. "Static behaviour of thin-film position-sensitive detectors based on p-i-n a-Si:H devices." Sensors and Actuators: A. Physical. 51 (1995): 143-151. AbstractWebsite

The aim of this work is to provide the basis for the interpretation of the lateral photoeffect in p-i-n a-Si:H one-dimensional thin-film position-sensitive detectors (1D TFPSDs) under steady state, through an analytical model. The experimental data recorded in 1D TFPSD devices with different characteristics are compared with the predicted curves and the obtained correlations are discussed. © 1996.

Martins, R., Fortunato E. "Static and dynamic resolution of 1D thin film position sensitive detector." Journal of Non-Crystalline Solids. 198-200 (1996): 1202-1206. AbstractWebsite

The aim of this work is to present a model to interpret the static and the dynamic detection and resolution limits of 1D thin film position sensitive detectors based on p-i-n a-Si:H devices. The model can determine the device characteristics that influence the spatial limits and the response time of the device.

Malik, A., Seco Nunes Vieira Fortunato Martins A. R. M. "Spray-deposited metal oxide films with various properties for micro- and optoelectronic applications: Growth and characterization." Materials Research Society Symposium - Proceedings. Vol. 471. 1997. 47-52. Abstract

This work reports the structure and electro-optical characteristics of different metal oxide films obtained by spray pyrolysis on heated glass substrates, aiming their application in optoelectronic devices. The results show that this technique leads to thin films with properties ranging from dielectric to degenerate semiconductors, offering the following advantages: simplicity, low cost, high productivity and the possibility of covering large areas, highly important for large area device applications.

Martins, Rodrigo, Fortunato Elvira. "Simulation of the lateral photo effect in large-area 1D a-Si:H p-i-n thin-film position-sensitive detectors." Proceedings of SPIE - The International Society for Optical Engineering. Vol. 2397. 1995. 745-756. Abstract

The aim of this work is to provide the basis for the interpretation, under steady state, of the lateral photoeffect in p-i-n a-Si:H 1D Thin Film Position Sensitive Detectors (1D TFPSD) through an analytical model. The experimental data recorded in 1D TFPSD devices with different performances are compared with the predicted curves and the obtained correlation's discussed.

Martins, R.a, Ferreira Fortunato Vieira I. a E. a. "Silicon oxycarbide microcrystalline layers produced by spatial separation techniques." Materials Research Society Symposium Proceedings. Vol. 336. 1994. 55-60. Abstract

Silicon oxycarbide microcrystallinc layers, n- and p-doped, highly conductive and highly transparent have been produced using a Two Consecutive Decomposition and Deposition Chamber (TCDDC) system. The films exhibit suitable properties for optoelectronic applications where wide band gap materials with required conductivity and stability are needed. In this paper we present the role of partial oxygen pressure (po2) in controlling the composition, structure and transport properties (conductivity. δd and optical gap, Eop) of silicon oxycarbide microcrystalline layers. © 1994 Materials Research Society.

Martins, R., Águas Silva Ferreira Cabrita Fortunato H. V. I. "Silicon nanostructure thin film materials." Vacuum. 64 (2002): 219-226. AbstractWebsite

This paper deals with the growth process of nanostructured silicon films produced by chemical vapour deposition technique, at or close to the γ-regime where powders are formed. There, besides the set of chemical reactions undertaken by the species decomposed on the growth surface, the importance of the physics of the plasma in managing the powders and on the final film performances will be shown. To identify the plasma region where Si nanoaggregates are formed, we propose the use of a new parameter that translates the energy coupling of the rf power to the species of the gas flow, per pressure range of the process. By doing so we could establish an excellent correlation between this ratio and the plasma parameters such as peak to peak rf voltage and plasma impedance, or with the films defect density and their transport properties. Apart from that, we also show that high compact Si nanoclusters could be grown under moderate ion bombardment. Finally, to allow the growth at high rates of controlled silicon nanostructures, a three cycling process based on hot wire chemical vapour deposition and plasma assisting the hot wire technique will be discussed. © 2002 Elsevier Science Ltd. All rights reserved.

Martins, R., Águas Silva Ferreira Cabrita Fortunato H. V. I. "Silicon films produced by PECVD under powder formation conditions." Materials Science Forum. 382 (2001): 21-28. AbstractWebsite

The process conditions of growing thin silicon films by plasma enhanced chemical vapour deposition (PECVD) were presented. The plasma impedance was found to monitor the powders in the PECVD systems and good quality silicon films were grown close to the plasma regime where the powders were formed. The silicon films exhibited properties which were interpreted based on a two-phase model where silicon nanostructures were embedded in a disordered network.

Malik, A., Martins R. "Silicon active optical sensors: From functional photodetectors to smart sensors." Sensors and Actuators, A: Physical. 68 (1998): 359-364. AbstractWebsite

We have developed new types of functional and smart optical silicon sensors, based on ITO/multichannel insulator/silicon structures, which are able to execute electronic functions such as amplifying the photocurrent (without avalanche multiplication), transforming the input optical signal into a radio frequency output signal and transforming the analogue input optical signal to a digital output form, without external active electronic components. These new functional optical sensors allow a substantial simplification of the registration of optical signals as well as of the electronic scheme to be used. © 1998 Elsevier Science S.A. All rights reserved.

Malik, Alexander, Martins Rodrigo. "Silicon active optical sensors: from functional photodetectors to smart sensors." Sensors and Actuators, A: Physical. 68 (1998): 359-364. AbstractWebsite

We have developed new types of functional and smart optical silicon sensors, based on ITO/multichannel insulator/silicon structures, which are able to execute electronic functions such as amplifying the photocurrent (without avalanche multiplication), transforming the input optical signal into a radio frequency output signal and transforming the analogue input optical signal to a digital output form, without external active electronic components. These new functional optical sensors allow as substantial simplification of the registration of optical signals as well as of the electronic scheme to be used.

Malik, A.a, Sêco Fortunato Martins A. b E. c. "Selective optical sensors from 0.25 to 1.1 μm based on metal oxide-semiconductor heterojunctions." Sensors and Actuators, A: Physical. 68 (1998): 333-337. AbstractWebsite

We present a set of high-efficiency optical sensors for the spectral range from 0.25 to 1.1 μm based on metal oxide-semiconductor heterostructures using different substrates: GaP, GaSe, AlxGa1 - xAs, GaAs and Si. A set of several transparent conductive metal oxide films such as indium, tin and zinc oxides fabricated by the spray pyrolysis method and its doping procedure has been investigated. The results show that heavily doped indium and tin oxide films are preferable as the active transparent conductive electrode in heterojunction surface-barrier structures. The fabricated sensors exhibit several features such as process simplicity, high quantum efficiency, uniformity of sensitivity over the active area and a high response speed. Such sensors can be used for precision measurements in different scientific and technical applications. © 1998 Elsevier Science S.A. All rights reserved.