Publications

Export 151 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
F
Mateus, O., Jacobs L. L., Polcyn M. J., Myers T. S., & Schulp A. S. (2015).  The fossil record of testudines from angola from the turonian to oligocene. Society of Vertebrate Paleontology Annual Meeting. 177., Dallasmateus_et_al_2015_testudines_angola_svp_abstract.pdf
Mateus, O., Jacobs L. L., Polcyn {M. J. }, Myers T. S., & Schulp A. S. (2015).  The fossil record of testudines from Angola from the Turonian to Oligocene. : Journal of Vertebrate Paleontology Abstract
n/a
G
Polcyn, M. J., Jacobs L. L., Strganac C., Mateus O., Myers T. S., May S., Araújo R., Schulp A. S., & Morais M. L. (2014).  Geological and paleoecological setting of a marine vertebrate bonebed from the Lower Maastrichtian at Bentiaba, Angola. Secondary Adaptation of Tetrapods to Aquatic Life. , 2-4 Jun 2014, Washington DC, USA
Strganac, C., Jacobs L., Polcyn M., Mateus O., Myers T., Araújo R., Fergunson K. M., Gonçalves A. O., Morais M. L., Schulp A. S., da Tavares T. S., & Salminen J. (2015).  Geological Setting and Paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, Angola. Netherlands Journal of Geosciences. 94(1), 121-136. Abstractstrganac_et_al_2014_geological_setting_bentiaba_angola.pdfWebsite

The Bench 19 Bonebed at Bentiaba, Angola, is a unique concentration of marine vertebrates preserving six species of mosasaurs in sediments best correlated by magnetostratigraphy to chron C32n.1n between 71.4 and 71.64 Ma. The bonebed formed at a paleolatitude near 24°S, with an Atlantic width at that latitude approximating 2700 km, roughly half that of the current width. The locality lies on an uncharacteristically narrow continental shelf near transform faults that controlled the coastal outline of Africa in the formation of the South Atlantic Ocean. Biostratigraphic change through the Bentiaba section indicates that the accumulation occurred in an ecological time dimension within the 240 ky bin delimited by chron 32n.1n. The fauna occurs in a 10 m sand unit in the Mocuio Formation with bones and partial skeletons concentrated in, but not limited to, the basal 1–2 m. The sediment entombing the fossils is an immature feldspathic sand shown by detrital zircon ages to be derived from nearby granitic shield rocks. Specimens do not appear to have a strong preferred orientation and they are not concentrated in a strand line. Stable oxygen isotope analysis of associated bivalve shells indicates a water temperature of 18.5°C. The bonebed is clearly mixed with scattered dinosaur and pterosaur elements in a marine assemblage. Gut contents, scavenging marks and associated shed shark teeth in the Bench 19 Fauna indicate biological association and attrition due to feeding activities. The ecological diversity of mosasaur species is shown by tooth and body-size disparity and by δ13C analysis of tooth enamel, which indicate a variety of foraging areas and dietary niches. The Bench 19 Fauna was formed in arid latitudes along a coastal desert similar to that of modern Namibia on a narrow, tectonically controlled continental shelf, in shallow waters below wave base. The area was used as a foraging ground for diverse species, including molluscivorus Globidens phosphaticus, small species expected near the coast, abundant Prognathodon kianda, which fed on other mosasaurs at Bench 19, and species that may have been transient and opportunistic feeders in the area.

Strganac, C., Jacobs L. L., Polcyn M. J., Mateus O., Myers T. S., Salminen J., May S. R., Araújo R., Ferguson K. M., Gon?alves A. O., Morais M. L., Schulp A. S., & da Silva Tavares T. (2014).  Geological setting and paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, Angola. Geologie en Mijnbouw/Netherlands Journal of Geosciences. 94, 121-136., Number 1 Abstract
n/a
Polcyn, M., Jacobs L., Strganac C., Mateus O., Myers S., May S., Araujo R., Schulp A., & Morais M. (2014).  Geology and paleoecology of a marine vertebrate bonebed from the lower Maastrichtian of Angola. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 206.polcyn_et_al._2014_geology_and_paleoecology_of_a_marine_vertebrate_bonebed_from_the_lower_maastrichtian_of_angola.pdf
H
Polcyn, M., Jacobs L., Schulp A., & Mateus O. (2007).  Halisaurus (Squamata: Mosasauridae) from the Maastrichtian of Angola. Journal of Vertebrate Paleontology. 27(Suppl. to 3), 130A., Jan: Museu Lourinha, So Methodist Univ, Nat Hist Museum Maastricht Abstractpolcyn_et_al_mateus2007_halisaurus_angola_svpmeet.pdf

Recent fieldwork in the Namibe province in southern Angola yielded cranial and postcranial elements of at least two individuals of the rare and enigmatic mosasaur Halisaurus from a single small excavation. The genus Halisaurus is unique in retaining a primitive configuration of the temporal arcade, specifically a broad, vertically oriented contact between the parietal and the supratemporal. The supratemporal is broadly sutured to the opisthotic and prootic, unlike the condition in varanoids in which the simple lunate element lies between the parietal ramus and the squamosal and does not form a sutural contact with the opisthotic or prootic, but as in other halisaurines retains a plesiomorphic, vertically oriented contact with the parietal rami. The squamosal is lightly built and broadly arched as in Varanus. Comparison with known halisaurines indicates the new material is referable to the species Halisaurus arambourgi.
The locality that yielded the new specimens has also yielded a large number of isolated teeth, bones, articulated, and associated skeletons of Mosasaurus, Prognathodon, Globidens, and Plioplatecarpus, which with Halisaurus comprise a mosasaur assemblage most similar to that reported from the Maastrichtian of Morocco.

Polcyn, M., Jacobs L. L., Schulp A., & Mateus O. (2007).  Halisaurus (Squamata: Mosasauridae) from the Maastrichtian of Angola. Journal of Vertebrate Paleontology. 27(suppl. to 3), 130. Abstract
n/a
I
Sander, M., Laven T., Mateus O., & Knotschke N. (2004).  Insular dwarfism in a brachiosaurid sauropod from the Upper Jurassic of Germany. Journal of Vertebrate Paleontology. 23, 108., Number Suppl. to 3 Abstract
n/a
Sander, M., Laven T., Mateus O., & Knotschke N. (2004).  Insular dwarfism in a brachiosaurid sauropod from the Upper Jurassic of Germany. Journal of Vertebrate Paleontology. 23, 108–108., Number Suppl. to Abstract
n/a
Jacinto, J. J., & Mateus O. (2002).  Integration of the distribution of Hemidactylus turcicus and Tarentola mauritanica in Portugal Continental in a G.I.S. and some occasional observations. (Sociedade Portuguesa de, Herpetologia, Ed.).Livro de resumos do VII Congresso Luso-espanhol (XI Congreso Español) de Herpetologia. 127., Évora, Portugal Abstract
n/a
L
Strganac, C., Jacobs L. L., Ferguson K. M., Polcyn M. J., Mateus O., Schulp A. S., & Morais M. L. (2013).  Late Cretaceous marine reptiles and cooling at the South Atlantic coast inferred through stable oxygen isotopes of Inoceramus from the Namibe Basin, Angola. Geological Society of America Abstracts with Programs. Vol. 45, No. 7, p.0.
Belvedere, M., Castanera D., Meyer C. A., Marty D., Mateus O., Silva B. C., Santos V. F., & Cobos A. (2019).  Late Jurassic globetrotters compared: A closer look at large and giant theropod tracks of North Africa and Europe. Journal of African Earth Sciences. 158, 103547. Abstractbelvedere_et_al_2019_jurassic_globetrotters_compared.pdfWebsite

Late Jurassic theropod tracks are very common both in North Africa and Europe. Two recently described ichnotaxa Megalosauripus transjuranicus and Jurabrontes curtedulensis from the Kimmeridgian of Switzerland show the coexistence of two apex predators in the same palaeoenvironment. Similar tracks can be found in tracksites from the Iberian Peninsula and from Morocco. Here, we further explore the similarities among the Swiss ichnotaxa and the other tracks from Germany (Kimmeridgian), Spain (Tithonian-Berriasian), Portugal (Oxfordian-Tithonian) and Morocco (Kimmeridgian) through novel three-dimensional data comparisons. Specimens were grouped in two morphotypes: 1) large and gracile (30 < Foot Length<50 cm) and 2) giant and robust (FL > 50 cm). The analyses show a great morphological overlap among these two morphotypes and the Swiss ichnotaxa (Megalosauripus transjuranicus and Jurabrontes curtedulensis, respectively), even despite the differences in sedimentary environment and age. This suggests a widespread occurrence of similar ichnotaxa along the western margin of Tethys during the Late Jurassic. The new data support the hypothesis of a Gondwana-Laurasia faunal exchange during the Middle or early Late Jurassic, and the presence of migratory routes around the Tethys.

Leal, A. S., Dionísio A., Sequeira Braga M. A., & Mateus O. (2016).  The long term preservation of late jurassic sandstone dinossaur footprints in a museum environment. International Journal of Conservation Science. 7, 627-646., Number 3 Abstract
n/a
M
Polcyn, M. J., Jacobs L. L., Mateus O., Schulp A. S., Strganac C., Araújo R., Graf J. F., Vineyard D., & Myers T. S. (2013).  A marine vertebrate assemblage from the Campanian-Maastrichtian boundary at Bentiaba, Angola. Geological Society of America Abstracts with Programs. Vol. 45, No. 7, p.0. polcyn_et_al_2013_abstract__a_marine_vertebrate_assemblage_from_the_campanian-maastrichtian_boundary_at_bentiaba_angola_2013__gsa_27-30_october_2013.pdf
Conti, S., Mateus O., & Sala G. (2021).  Mechanical characterization of tibial bone material of an ostrich. Rossi V., Fanti F., Barbieri G., Cavalazzi B. & Scarponi D. (Editors) 2021. Paleodays 2021. Abstract Book del XXI Convegno della Società Paleontologica Italiana, live virtual edition: 127 pp.. , 15-17 June, Bologna (Italy): University of Bolognaconti_et_al_2021_ostrich_bone.pdf
Polcyn, M. J., Jacobs L. L., Schulp A. S., & Mateus O. (2007).  Morphology and systematic position of Angolasaurus bocagei and the evolution of the braincase in Plioplatecarpine mosasaurs. Second Mosasaur Meeting. , May 3-6, 2007, Sternberg Museum, Hays, Kansaspolcyn_et_al_2007_angolosaurus_mosasaurmeetingabstracts.pdf
Polcyn, M. W., Jacobs L. L., Schulp A. S., & Mateus O. (2007).  Morphology and systematic position of Angolasaurus bocagei and the evolution of the braincase in Plioplatecarpine mosasaurs. (Sternberg, Museum, Ed.).Second Mosasaur Meeting. 20., Hays, Kansas Abstract
n/a
Polcyn, M. W., Jacobs L. L., Schulp A. S., & Mateus O. (2007).  Morphology and systematic position of Angolasaurus bocagei and the evolution of the braincase in Plioplatecarpine mosasaurs. Second Mosasaur Meeting. 20–20., Hays, Kansas Abstract
n/a
Polcyn, M. W., Jacobs L. L., Schulp A. S., & Mateus O. (2007).  The mosasaurs of Angola. Second Mosasaur Meeting. 21., Hays, Kansas: Sternberg Museum Abstract

Although occurrences of marine reptiles have been previously reported from Angola, with the exception of two Turonian taxa, these reports were based largely on isolated teeth. Fieldwork in 2005 and 2006 yielded well-preserved remains of marine reptiles including plesiosaurs, turtles, and mosasaurs. The mosasaurs discussed here were recovered from two field areas: Turonian sediments at Iembe along the north coast and Maastrichtian sediments at Bentiaba on the south coast. The Turonian section near Iembe produced at least two new specimens of Angolasaurus bocagei and one fragmentary specimen of Tylosaurus iembeensis. One of the Angolasaurus specimens is represented by a well preserved, complete and articulated skull and partial postcrania, including portions of the forelimbs and pectoral girdle. The preservation of material from the Bentiaba locality is remarkable due to the grain support of the entombing sandstone, which preserves fine anatomical details with little apparent crushing, and in the number of articulated, semi-articulated, and associated skeletons. Identifications from the field and preliminary preparation show the Bentiaba mosasaur fauna is represented by at least five genera including Mosasaurus, Prognathodon, Globidens, Plioplatecarpus and Halisaurus. Collectively, these new specimens greatly expand our knowledge of the anatomy and systematics of Angolan mosasaurs.

Polcyn, M. W., Jacobs L. L., Schulp A. S., & Mateus O. (2007).  The mosasaurs of Angola. (Sternberg, Museum, Ed.).Second Mosasaur Meeting. 21., Hays, Kansas Abstract
n/a
Polcyn, M. W., Jacobs L. L., Schulp A. S., & Mateus O. (2007).  The mosasaurs of Angola. Second Mosasaur Meeting. 21–21., Hays, Kansas Abstract
n/a
Conti, S., Tschopp E., Sala G., & Mateus O. (2021).  Multibody simulations of diplodocid tail motion. Annual conference of the European Association of Vertebrate Palaeontologists. , 5th-9th July : European Association of Vertebrate Palaeontologistsconti_et_al_2021_diplodocid_tail._eavp_abstract.pdf
N
Araújo, R., Polcyn M. J., Lindgren J., Jacobs L. L., Schulp A. S., Mateus O., Gonçalves O. A., & Morais M. - L. (2015).  New aristonectine elasmosaurid plesiosaur specimens from the Early Maastrichtian of Angola and comments on paedomorphism in plesiosaurs. Netherlands Journal of Geosciences. FirstView, 1–16., 2 Abstractaraujo_et_al_2015_paedomorphism-libre.pdfWebsite

ABSTRACT New elasmosaurid plesiosaur specimens are described from the Early Maastrichtian of Angola. Phylogenetic analyses reconstruct the Angolan taxon as an aristonectine elasmosaurid and the sister taxon of an unnamed form of similar age from New Zealand. Comparisons also indicate a close relationship with an unnamed form previously described from Patagonia. All of these specimens exhibit an ostensibly osteologically immature external morphology, but histological analysis of the Angolan material suggests an adult with paedomorphic traits. By extension, the similarity of the Angolan, New Zealand and Patagonian material indicates that these specimens represent a widespread paedomorphic yet unnamed taxon.

Araújo, R., Polcyn M. J., Lindgren J., Jacobs L. L., Schulp A. S., Mateus O., Gon?alves A. O., & Morais M. - L. (2014).  New aristonectine elasmosaurid plesiosaur specimens from the Early Maastrichtian of Angola and comments on paedomorphism in plesiosaurs. Geologie en Mijnbouw/Netherlands Journal of Geosciences. 94, 93-108., Number 1 Abstract
n/a
Araújo, R., Polcyn M. J., Schulp A. S., Mateus O., Jacobs L. L., Gonçalves O. A., & Morais M. - L. (2015).  A new elasmosaurid from the early Maastrichtian of Angola and the implications of girdle morphology on swimming style in plesiosaurs. Netherlands Journal of Geosciences. FirstView, 1–12., 1 Abstractaraujo_et_al_2015_a_new_elasmosaurid_from_the_early_maastrichtian_of_angola.pdfWebsite

ABSTRACT We report here a new elasmosaurid from the early Maastrichtian at Bentiaba, southern Angola. Phylogenetic analysis places the new taxon as the sister taxon to Styxosaurus snowii, and that clade as the sister of a clade composed of (Hydrotherosaurus alexandrae (Libonectes morgani + Elasmosaurus platyurus)). The new taxon has a reduced dorsal blade of the scapula, a feature unique amongst elasmosaurids, but convergent with cryptoclidid plesiosaurs, and indicates a longitudinal protraction-retraction limb cycle rowing style with simple pitch rotation at the glenohumeral articulation. Morphometric phylogenetic analysis of the coracoids of 40 eosauropterygian taxa suggests that there was a broad range of swimming styles within the clade.

Araújo, R., Polcyn M. J., Schulp A. S., Mateus O., Jacobs L. L., Gon?alves A. O., & Morais M. - L. (2014).  A new elasmosaurid from the early Maastrichtian of Angola and the implications of girdle morphology on swimming style in plesiosaurs. Geologie en Mijnbouw/Netherlands Journal of Geosciences. 94, 109-120., Number 1 Abstract
n/a
Graf, J., Jacobs L. L., Polcyn M. J., Mateus O., & Schulp A. S. (2011).  New fossil whales from Angola. 71st Annual Meeting of the Society of Vertebrate Paleontology. 119., Jan: Abstracts of the 71st Annual Meeting of the Society of Vertebrate Paleontologygraf_et_al_mateus_2011_fossil_whales_from_angola_svp11abstracts.pdf
Vineyard, D., Mateus O., Jacobs L. L., Polcyn M. J., & Schulp A. (2012).  A new marine turtle from the Maastrichtian of Angola. Journal of Vertebrate Paleontology, Program and Abstracts, 2012, 189. ISSN 1937-2809 . 189.vineyard_mateus_et_al_2012_euclastes_chelonia_turtle_angola_svp_2012_abstract.pdf
Steyer, J. S., Mateus O., Butler R. J., Brusatte S. L., & Whiteside J. H. (2011).  A new metoposaurid (temnospondyl) bonebed from the Late Triassic of Portugal. 71st Annual Meeting of the Society of Vertebrate Paleontology. 200., Jan: Abstracts of the 71st Annual Meeting of the Society of Vertebrate Paleontology Abstractsteyer_mateus_et_al_2011_._a_new_metoposaurid_temnospondyl_bonebed_from_the_late_triassic_of_portugal_svp11abstracts.pdf

The end-Triassic extinction event (ETE), considered one of the ‘Big Five’ mass extinctions, marks a dividing line between early Mesozoic vertebrate assemblages, typically including abundant temnospondyls, basal synapsids and basal archosaurs, and ‘typical’ Mesozoic faunas dominated by dinosaurs, pterosaurs, crocodylomorphs, turtles and mammaliaforms.
Recent geochemical work has provided strong evidence that the ETE is synchronous with, and likely caused by, the emplacement of the Central Atlantic magmatic province (CAMP).
However, stratigraphic sections containing both terrestrial vertebrates and CAMP basalts are scarce, complicating attempts to examine terrestrial faunal changes during this extinction event. The Triassic–Jurassic Algarve Basin, southern Portugal, is an extensional rift basin

to-marginal marine red beds (the ‘Grés de Silves’ Group) interbedded with CAMP basalts.

bonebed from the interval ‘AB1’ of the Grés de Silves. Preliminary excavations yielded at least nine well-preserved temnospondyl individuals represented by partial to nearly complete skulls and disarticulated postcranial elements of juvenile to adult ages. Nearly all material appears to represent a single species of metoposaurid referable to the genus Metoposaurus, well known from the late Carnian–early Norian of Germany and Poland. A number of characters of the occiput and mandible suggest that the Algarve material may represent a new species. This new material provides new data on the diversity and paleogeographical distribution of the metoposaurids, a highly autapomorphic and peculiar group composed of large aquatic carnivores with a unique elongated but brevirostral skull. This taxon also provides

Horizon may be within or close to the late Carnian–early Norian. Additional bone-bearing horizons within the ‘Grés de Silves’ provide a rare opportunity to examine terrestrial faunal change in the lead-up to the ETE.

Schulp, A. S., Polcyn M. J., Mateus O., Jacobs L. L., Morais L. M., & Tavares T. S. (2006).  New mosasaur material from the Maastrichtian of Angola, with notes on the phylogeny, distribution and palaeoecology of the genus Prognathodon. Publicaties van het Natuurhistorisch Genootschap in Limburg Reeks XLV aflevering 1. Stichting Natuurpublicaties Limburg, Maastricht . 57-67 .schulp_polcyn_mateus_jacobs_et_al_2006_new_mosasaur_material_from_the_maastrichtian_of_angola_with_notes_on_the_phylogeny_distribution_and_palaeoecology_of_the_genus_prognathodon.pdf
Schulp, A. S., Polcyn M. J., Mateus O., Jacobs L. L., Morais M. L., & Tavares T. S. (2006).  New mosasaur material from the Maastrichtian of Angola, with notes on the phylogeny, distribution and palaeoecology of the genus Prognathodon. Publicaties van het Natuurhistorisch Genootschap in Limburg Reeks XLV aflevering 1. Stichting Natuurpublicaties Limburg, Maastricht. 57-67. Abstract
n/a
Puértolas-Pascual, E., Marx M., Mateus O., Saleiro A., Fernandes A. E., Marinheiro J., Tomás C., & Mateus S. (2021).  A new plesiosaur from the Lower Jurassic of Portugal and the early radiation of Plesiosauroidea. Acta Palaeontologica Polonica. 66(2), 369-388. Abstracta_new_plesiosaur_from_the_lower_jurassic_of_portugal_and_the_early_radiation_of_plesiosauroidea.pdfWebsite

A new plesiosaur partial skeleton, comprising most of the trunk and including axial, limb, and girdle bones, was collected in the lower Sinemurian (Coimbra Formation) of Praia da Concha, near São Pedro de Moel in central west Portugal. The specimen represents a new genus and species, Plesiopharos moelensis gen. et sp. nov. Phylogenetic analysis places this taxon at the base of Plesiosauroidea. Its position is based on this exclusive combination of characters: presence of a straight preaxial margin of the radius; transverse processes of mid-dorsal vertebrae horizontally oriented; ilium with sub-circular cross section of the shaft and subequal anteroposterior expansion of the dorsal blade; straight proximal end of the humerus; and ventral surface of the humerus with an anteroposteriorly long shallow groove between the epipodial facets. In addition, the new taxon has the following autapomorphies: iliac blade with less expanded, rounded and convex anterior flank; highly developed ischial facet of the ilium; apex of the neural spine of the first pectoral vertebra inclined posterodorsally with a small rounded tip. This taxon represents the most complete and the oldest plesiosaur species in the Iberian Peninsula. It is also the most complete, best preserved, and oldest marine vertebrate in the region and testifies to the incursion of marine reptiles in the newly formed proto-Atlantic sea, prior to the Atlantic Ocean floor spreading in the Early Cretaceous.

Smith, A. S., Araújo R., & Mateus O. (2012).  A new plesiosauroid from the Toarcian (Lower Jurassic) of Alhadas, Portugal. Acta Palaeontologica Polonica. 57(2), 257–266., Jan Abstractsmith__araujo__mateus_2012_a_new_plesiosauroid_from_the_toarcian_lower_jurassic_of_alhadas_portugal.pdf

A partial plesiosauroid skull from the São Gião Formation (Toarcian, Lower Jurassic) of Alhadas, Portugal is re−evaluated and described as a new taxon, Lusonectes sauvagei gen. et sp. nov. It has a single autapomorphy, a broad triangular parasphenoid cultriform process that is as long as the posterior interpterygoid vacuities, and also a unique character combination, including a jugal that contacts the orbital margin, a distinct parasphenoid–basisphenoid suture exposed between the posterior interpterygoid vacuities, lack of an anterior interpterygoid vacuity, and striations on the ventral surface of
the pterygoids. Phylogenetic analysis of Jurassic plesiosauroids places Lusonectes as outgroup to “microcleidid elasmosaurs”, equivalent to the clade Plesiosauridae. Lusonectes sauvagei is the only diagnostic plesiosaur from Portugal, and the westernmost occurrence of any plesiosaurian in Europe.

Smith, A. S., Araújo R., & Mateus O. (2012).  A new plesiosauroid from the Toarcian (Lower Jurassic) of Alhadas, Portugal. Acta Palaeontologica Polonica. 57, 257-266., Number 2 Abstract
n/a
Schulp, A., Mateus O., Polcyn M., & Jacobs L. (2006).  A new Prognathodon (Squamata : Mosasauridae) from the Cretaceous of Angola. JOURNAL OF VERTEBRATE PALEONTOLOGY. 26, 122A-122A., Jan Abstractschulp_et_al_2006.pdf

n/a

Brusatte, S. L., Butler R. J., Mateus O., & Steyer S. J. (2015).  A new species of Metoposaurus from the Late Triassic of Portugal and comments on the systematics and biogeography of metoposaurid temnospondyls. Journal of Vertebrate PaleontologyJournal of Vertebrate Paleontology. e912988., 2015: Taylor & Francis Abstractbrusatte_et_al2015metoposaurusportugal.pdfWebsite

ABSTRACTMetoposaurids are a group of temnospondyl amphibians that filled crocodile-like predatory niches in fluvial and lacustrine environments during the Late Triassic. Metoposaurids are common in the Upper Triassic sediments of North Africa, Europe, India, and North America, but many questions about their systematics and phylogeny remain unresolved. We here erect Metoposaurus algarvensis, sp. nov., the first Metoposaurus species from the Iberian Peninsula, based on several new specimens from a Late Triassic bonebed in Algarve, southern Portugal. We describe the cranial and pectoral anatomy of M. algarvensis and compare it with other metoposaurids (particularly other specimens of Metoposaurus from Germany and Poland). We provide a revised diagnosis and species-level taxonomy for the genus Metoposaurus, which is currently represented with certainty by three European species (M. diagnosticus, M. krasiejowensis, M. algarvensis). We also identify cranial characters that differentiate these three species, and may have phylogenetic significance. These include features of the braincase and mandible, which indicate that metoposaurid skulls are more variable than previously thought. The new Portuguese bonebed provides further evidence that metoposaurids congregated in fluvial and lacustrine settings across their geographic range and often succumbed to mass death events. We provide an updated paleogeographic map depicting all known metoposaurid occurrences, which shows that these temnospondyls were globally distributed in low latitudes during the Late Triassic and had a similar, but not identical, paleogeographic range as phytosaurs.http://zoobank.org/urn:lsid:zoobank.org:pub:083C80C6-0AB6-49E1-A636-6A8BDBC06A47ABSTRACTMetoposaurids are a group of temnospondyl amphibians that filled crocodile-like predatory niches in fluvial and lacustrine environments during the Late Triassic. Metoposaurids are common in the Upper Triassic sediments of North Africa, Europe, India, and North America, but many questions about their systematics and phylogeny remain unresolved. We here erect Metoposaurus algarvensis, sp. nov., the first Metoposaurus species from the Iberian Peninsula, based on several new specimens from a Late Triassic bonebed in Algarve, southern Portugal. We describe the cranial and pectoral anatomy of M. algarvensis and compare it with other metoposaurids (particularly other specimens of Metoposaurus from Germany and Poland). We provide a revised diagnosis and species-level taxonomy for the genus Metoposaurus, which is currently represented with certainty by three European species (M. diagnosticus, M. krasiejowensis, M. algarvensis). We also identify cranial characters that differentiate these three species, and may have phylogenetic significance. These include features of the braincase and mandible, which indicate that metoposaurid skulls are more variable than previously thought. The new Portuguese bonebed provides further evidence that metoposaurids congregated in fluvial and lacustrine settings across their geographic range and often succumbed to mass death events. We provide an updated paleogeographic map depicting all known metoposaurid occurrences, which shows that these temnospondyls were globally distributed in low latitudes during the Late Triassic and had a similar, but not identical, paleogeographic range as phytosaurs.http://zoobank.org/urn:lsid:zoobank.org:pub:083C80C6-0AB6-49E1-A636-6A8BDBC06A47

Brusatte, S. L., Butler R. J., Mateus O., & Steyer J. S. (2015).  A new species of Metoposaurus from the Late Triassic of Portugal and comments on the systematics and biogeography of metoposaurid temnospondyls. Journal of Vertebrate Paleontology. 35, , Number 3 Abstract
n/a
Schulp, A. S., Polcyn M. J., Mateus O., Jacobs L. L., & Morais M. L. (2008).  A new species of Prognathodon (Squamata, Mosasauridae) from the Maastrichtian of Angola, and the affinities of the mosasaur genus Liodon. Proceedings of the Second Mosasaur Meeting, Fort Hays Studies Special Issue 3, Fort Hays State University, Hays, Kansas. 1-12. Abstractschulp_et_al_2008_prognathodon_kianda.pdf

Here we describe a new species of the mosasaurine genus Prognathodon from the Maastrichtian of Namibe, Angola, on the basis of five specimens which represent most of the cranial skeleton including the diagnostic quadrate. Phylogenetic analysis shows this new taxon, P. kianda nov. sp., to be the sister taxon to all other species of Prognathodon. It is unique amongst Prognathodon in possessing a high marginal tooth count and relatively small pterygoid teeth. The tooth morphology in the new taxon is reminiscent of some species of the genus Liodon, allowing association of Liodon-like dentition with otherwise Prognathodon-like crania, and thus resolves the long-standing question of the phylogenetic affinities of Liodon.

Schulp, A. S., Polcyn M. J., Mateus O., Jacobs L. L., & Morais M. L. (2008).  A new species of Prognathodon (Squamata, Mosasauridae) from the Maastrichtian of Angola, and the affinities of the mosasaur genus Liodon. Proceedings of the Second Mosasaur Meeting, Fort Hays Studies Special Issue 3, Fort Hays State University, Hays, Kansas. 1-12. Abstract
n/a
Polcyn, M., Jacobs L., Mateus O., & Schulp A. (2009).  New specimens of Angolasaurus bocagei and comments on the early radiations of plioplatecarpine mosasaurs. Journal of Vertebrate Paleontology. Journal of Vertebrate Paleontology. 29, 165., Number 3 Abstract
n/a
Polcyn, M. J., Jacobs L. L., Mateus O., & Schulp A. S. (2009).  New specimens of Angolasaurus bocagei and comments on the early radiations of plioplatecarpine mosasaurs. Journal of Vertebrate Paleontology. Journal of Vertebrate Paleontology. 29, 165–165., Number 3 Abstract
n/a
Polcyn, M. J., Jacobs L. L., Schulp A. S., & Mateus O. (2010).  The North African Mosasaur Globidens phosphaticus from the Maastrichtian of Angola. Historical Biology. 22, 175-185., Number 1 Abstract
n/a
O
Mateus, O., Callapez P. M., Polcyn M. J., Schulp A. S., Gonçalves A. O., & Jacobs L. L. (2019).  O registo fóssil da biodiversidade em Angola ao longo do tempo: uma perspectiva paleontológica. (Huntley B.J., Russo V., Lages F., Ferrand N., Ed.).Biodiversidade de Angola: Ciência e Conservação - Uma Síntese Moderna. 89-116., Porto: Arte & Ciência Abstractmateus_et_al_2019_paleobiodiversidade_angola.pdf

Este capítulo apresenta uma visão geral da paleobiodiversidade alfa de Angola com base no registo fóssil disponível, o qual se limita às rochas sedimentares, a sua idade variando entre o Pré‑Câmbrico e o pre‑
sente. O período geológico com a maior paleobiodiversidade no registo fóssil angolano é o Cretácico, com mais de 80% do total dos táxones fósseis conhecidos, especialmente moluscos marinhos, sendo estes na sua maioria
amonites. Os vertebrados representam cerca de 15% da fauna conhecida e cerca de um décimo destes são espécies descritas pela primeira vez com base em espécimes de Angola.

Jacobs, L. L., Mateus O., Polcyn M. J., Schulp A. S., Antunes M. T., Morais M. L., & da Silva Tavares T. (2006).  The occurrence and geological setting of Cretaceous dinosaurs, mosasaurs, plesiosaurs, and turtles from Angola. Paleont. Soc. Korea. 22(1), 91-110. Abstractjacobs_mateus-et_al_2006_angola.pdf

Vertebrate-bearing fossiliferous outcrops of Cretaceous age in sub-Saharan Africa are rare because of younger superficial deposits, vegetation cover, and the widespread occurrence of Precambrian metamorphic plateau basement comprising much of the continent. However, one area of extensive marine and nonmarine
Cretaceous exposures is found between the plateau and the coast in Angola. The Angolan margin was formed in conjunction with the breakup of Gondwana and subsequent growth of the South Atlantic. Cretaceous deposits are constrained in age by the emplacement of oceanic crust, which began no later than magnetozone M3
(approximately 128 Ma, Barremian). Shallow marine facies are exposed in sea cliffs but equivalent facies become increasingly terrestrial inland. Few vertebrate fossils have been described from Angola aside from sharks.
Notable exceptions are the late Turonian mosasaurs Angolasaurus bocagei and Tylosaurus iembeensis from northern Angola. Those taxa are significant because they are among the earliest derived mosasaurs. Recent field work led to the discovery of a new skull of Angolasaursus as well as sharks, fish, plesiosaurs, the skull of a new taxon of turtle, additional mosasaurs, and the articulated forelimb of a sauropod dinosaur, the first reported dinosaur from Angola. In southern Angola, marine sediments spanning the Cretaceous-Paleogene boundary are found.

Jacobs, L. L., Mateus O., Polcyn M. J., Schulp A. S., Antunes M. T., Morais M. L., & Tavares T. S. (2006).  The occurrence and geological setting of Cretaceous dinosaurs, mosasaurs, plesiosaurs, and turtles from Angola. Journal of the Paleontological Society of Korea. 22, , Number 1 Abstract
n/a
Jacobs, L. L., Mateus O., Polcyn M. J., Schulp A. S., Antunes M. T., Morais M. L., & da Silva Tavares T. (2006).  The occurrence and geological setting of Cretaceous dinosaurs, mosasaurs, plesiosaurs, and turtles from Angola. JOURNAL-PALEONTOLOGICAL SOCIETY OF KOREA. 22, 91–91., Number 1 Abstract
n/a