Publications

Export 168 results:
Sort by: Author Title Type [ Year  (Desc)]
2022
Fernandes, A. E., Mateus O., Andres B., Polcyn M. J., Schulp A. S., Gonçalves A. O., & Jacobs L. L. (2022).  Pterosaurs from the Late Cretaceous of Angola. Diversity. 14, , Number 9 Abstractdiversity-14-00741.pdfWebsite

Here, we describe the first pterosaur remains from Angola, an assemblage of fourteen bones from the Lower Maastrichtian marine deposits of Bentiaba, Namibe Province. One new species is introduced, Epapatelo otyikokolo, gen. et sp. nov., which comprises an articulated partial left humerus and ulna as well as an articulated left ulna and radius (from a second individual). Phylogenetic analysis confirms a non-nyctosaurid pteranodontian attribution for this new taxon and supports a new apomorphy-based clade, Aponyctosauria, which is here defined. Late Cretaceous pteranodontians are rare in Sub-Saharan Africa and throughout the Southern Hemisphere. Preliminary histological analysis also reveals a likely sub-adult age for one of the specimens. This fossil assemblage provides a first glimpse of Angolan pterosaur paleobiodiversity providing further insight into the Gondwanan ecosystems of the Upper Cretaceous.

2021
Beccari, V., Pinheiro F. L., Nunes I., Anelli L. E., Mateus O., & Costa F. R. (2021).  Osteology of an exceptionally well-preserved tapejarid skeleton from Brazil: Revealing the anatomy of a curious pterodactyloid clade. PLOS ONE. 16(8), e0254789 - ., 2021/08/25: Public Library of Science Abstractbeccari_et_al_2021.pdfWebsite

A remarkably well-preserved, almost complete and articulated new specimen (GP/2E 9266) of Tupandactylus navigans is here described for the Early Cretaceous Crato Formation of Brazil. The new specimen comprises an almost complete skeleton, preserving both the skull and post-cranium, associated with remarkable preservation of soft tissues, which makes it the most complete tapejarid known thus far. CT-Scanning was performed to allow the assessment of bones still covered by sediment. The specimen can be assigned to Tupa. navigans due to its vertical supra-premaxillary bony process and short and rounded parietal crest. It also bears the largest dentary crest among tapejarine pterosaurs and a notarium, which is absent in other representatives of the clade. The new specimen is here regarded as an adult individual. This is the first time that postcranial remains of Tupa. navigans are described, being also an unprecedented record of an articulated tapejarid skeleton from the Araripe Basin.

2019
Azanza, M. M., Coimbra R., Puértolas-Pascual E., Russo J., Bauluz B., & Mateus O. (2019).  Crystallography of Lourinhanosaurus eggshells (Dinosauria, Theropoda, Allosauroidea). Journal of Vertebrate Paleontology, Program and Abstracts. 156-157.moreno_azanza_et_al_2019_svp_abstract.pdf
Hendrickx, C., Mateus O., Araújo R., & Choiniere J. (2019).  The distribution of dental features in non-avian theropod dinosaurs: Taxonomic potential, degree of homoplasy, and major evolutionary trends. Palaeontologia Electronica. 22(3), 1-110. Abstractthe_distribution_of_dental_features_in_non-avian_t.pdfWebsite

Isolated theropod teeth are some of the most common fossils in the dinosaur fossil record and are continually reported in the literature. Recently developed quantitative methods have improved our ability to test the affinities of isolated teeth in a repeatable framework. But in most studies, teeth are diagnosed on qualitative characters. This can be problematic because the distribution of theropod dental characters is still poorly documented, and often restricted to one lineage. To help in the identification of isolated theropod teeth, and to more rigorously evaluate their taxonomic and phylogenetic potential, we evaluated dental features in two ways. We first analyzed the distribution of 34 qualitative dental characters in a broad sample of taxa. Functional properties for each dental feature were included to assess how functional similarity generates homoplasy. We then compiled a quantitative data matrix of 145 dental characters for 97 saurischian taxa. The latter was used to assess the degree of homoplasy of qualitative dental characters, address longstanding questions on the taxonomic and biostratigraphic value of theropod teeth, and explore the major evolutionary trends in the theropod dentition.

In smaller phylogenetic datasets for Theropoda, dental characters exhibit higher levels of homoplasy than non-dental characters, yet they still provide useful grouping information and optimize as local synapomorphies of smaller clades. In broader phylogenetic datasets, the degree of homoplasy displayed by dental and non-dental characters is not significantly different. Dental features on crown ornamentations, enamel texture and tooth microstructure have significantly less homoplasy than other dental features and can be used to identify many theropod taxa to ‘family’ or ‘sub-family’ level, and some taxa to genus or species. These features should, therefore, be a priority for investigations seeking to classify isolated teeth.

Our observations improve the taxonomic utility of theropod teeth and in some cases can help make isolated teeth useful as biostratigraphic markers. This proposed list of dental features in theropods should, therefore, facilitate future studies on the systematic paleontology of isolated teeth.

Azanza, M. M., Coimbra R., Puértolas-Pascual E., Russo J., Bauluz B., & Mateus O. (2019).  Crystallography of Lourinhanosaurus eggshells (Dinosauria, Theropoda, Allosauroidea). Journal of Vertebrate Paleontology, Program and Abstracts. 156-157. Abstract
n/a
Hendrickx, C., Mateus O., Araújo R., & Choiniere J. (2019).  The distribution of dental features in non-avian theropod dinosaurs: Taxonomic potential, degree of homoplasy, and major evolutionary trends. Palaeontologia Electronica. 22, , Number 3 Abstract
n/a
2018
Agnolin, F. L., Mateus O., Milàn J., Marzola M., Wings O., Adolfssen J. S., & Clemmensen L. B. (2018).  Ceratodus tunuensis, sp. nov., a new lungfish (Sarcopterygii, Dipnoi) from the Upper Triassic of central East Greenland. Journal of Vertebrate Paleontology. e1439834., apr: Informa {UK} Limited AbstractWebsite
n/a
Agnolin, F. L., Mateus O., Milàn J., Marzola M., Wings O., Adolfssen J. S., & Clemmensen L. B. (2018).  Ceratodus tunuensis, sp. nov., a new lungfish (Sarcopterygii, Dipnoi) from the Upper Triassic of central East Greenland. Journal of Vertebrate PaleontologyJournal of Vertebrate Paleontology. e1439834., 2018: Taylor & Francis Abstractagnolin_et_al_2018_ceratodus_tunuensis_greenland.pdfWebsite

ABSTRACTThe fossil record of post-Paleozoic lungfishes in Greenland is currently restricted to a few brief reports of isolated and undetermined tooth plates coming from the uppermost Fleming Fjord Formation (late Norian) in Jameson Land, central East Greenland. Here, we describe Ceratodus tunuensis, sp. nov., a new dipnoan from a thin bed of calcareous lake mudstone from the ?rsted Dal Member of the Fleming Fjord Formation. The Ceratodus fossil record indicates that during the Late Triassic, this genus was restricted to the middle latitudes of the Northern Hemisphere. This record matches previous paleobiogeographical analyses and indicates that terrestrial biota during the Late Triassic was strongly influenced by paleolatitude.Citation for this article: Agnolin, F. L., O. Mateus, J. Milàn, M. Marzola, O. Wings, J. Schulz Adolfssen, and L. B. Clemmensen. 2018. Ceratodus tunuensis, sp. nov., a new lungfish (Sarcopterygii, Dipnoi) from the Upper Triassic of central East Greenland. Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2018.1439834.

2017
Mateus, O., and Dinis J., Cunha P. P., & and (2017).  The Lourinhã Formation: the Upper Jurassic to lower most Cretaceous of the Lusitanian Basin, Portugal – landscapes where dinosaurs walked. Ciências da Terra - Earth Sciences Journal. 19, 75–97., sep, Number 1: {NOVA}.{ID}.{FCT} AbstractWebsite
n/a
Ripple, W. J., Wolf C., Newsome T. M., Galetti M., Alamgir M., Crist E., Mahmoud M. I., Laurance W. F., & other scientist signatories +15 364 (2017).  World Scientists’ Warning to Humanity: A Second Notice. BioScience. bix125. Abstractripple_et_al_2017_scientists_merged_with_supp_material.pdfWebsite

n/a

Ripple, W. J., Wolf C., Newsome T. M., Galetti M., Alamgir M., Crist E., Mahmoud M. I., Laurance W. F., & signatoriesscientist +15364 (2017).  World Scientists’ Warning to Humanity: A Second Notice. BioScience. 125, Abstract
n/a
2016
Ceríaco, L. M. P., Gutiérrez E. E., Dubois A., Abdala C. S., Alqarni A. S., Adler K., et al. (2016).  Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences. Zootaxa. 4196(3), 435 - 445., 2016 AbstractWebsite
n/a
Klein, H., Milàn J., Clemmensen L. B., Frobøse N., Mateus O., Klein N., Adolfssen J. S., Estrup E. J., & Wings O. (2016).  Archosaur footprints (cf. Brachychirotherium) with unusual morphology from the Upper Triassic Fleming Fjord Formation (Norian–Rhaetian) of East Greenland. Geological Society, London, Special Publications. 434(1), 71-85. Abstractklein_et_al_2015_archosaur_footprints_cf._brachychirotherium_with_unusual.pdfWebsite

The Ørsted Dal Member of the Upper Triassic Fleming Fjord Formation in East Greenland is well known for its rich vertebrate fauna, represented by numerous specimens of both body and ichnofossils. In particular, the footprints of theropod dinosaurs have been described. Recently, an international expedition discovered several slabs with 100 small chirotheriid pes and manus imprints (pes length 4–4.5 cm) in siliciclastic deposits of this unit. They show strong similarities with Brachychirotherium, a characteristic Upper Triassic ichnogenus with a global distribution. A peculiar feature in the Fleming Fjord specimens is the lack of a fifth digit, even in more deeply impressed imprints. Therefore, the specimens are assigned here tentatively to cf. Brachychirotherium. Possibly, this characteristic is related to the extremely small size and early ontogenetic stage of the trackmaker. The record from Greenland is the first evidence of this morphotype from the Fleming Fjord Formation. Candidate trackmakers are crocodylian stem group archosaurs; however, a distinct correlation with known osteological taxa from this unit is not currently possible. While the occurrence of sauropodomorph plateosaurs in the bone record links the Greenland assemblage more closer to that from the Germanic Basin of central Europe, here the described footprints suggest a Pangaea-wide exchange.Supplementary material: Three-dimensional model of cf. Brachychirotherium pes–manus set (from MGUH 31233b) from the Upper Triassic Fleming Fjord Formation (Norian–Rhaetian) of East Greenland as pdf, ply and jpg files (3D model created by Oliver Wings; photographs taken by Jesper Milàn) is available at https://doi.org/10.6084/m9.figshare.c.2133546

Hansen, B. B., Milàn J., Clemmensen L. B., Adolfssen J. S., Estrup E. J., Klein N., Mateus O., & Wings O. (2016).  Coprolites from the Late Triassic Kap Stewart Formation, Jameson Land, East Greenland: morphology, classification and prey inclusions. Geological Society, London, Special Publications. 434(1), 49-69. Abstracthansen_et_al_2015_coprolites_from_the_late_triassic_kap_stewart_formation_jameson_land_east_greenland.pdfWebsite

A large collection of vertebrate coprolites from black lacustrine shales in the Late Triassic (Rhaetian–Sinemurian) Kap Stewart Formation, East Greenland is examined with regard to internal and external morphology, prey inclusions, and possible relationships to the contemporary vertebrate fauna. A number of the coprolites were mineralogically examined by X-ray diffraction (XRD), showing the primary mineral composition to be apatite, clay minerals, carbonates and, occasionally, quartz in the form of secondary mineral grains. The coprolite assemblage shows multiple sizes and morphotypes of coprolites, and different types of prey inclusions, demonstrating that the coprolite assemblage originates from a variety of different producers.Supplementary material: A description of the size, shape, structure, texture, contents and preservation of the 328 specimens is available at https://doi.org/10.6084/m9.figshare.c.2134335

Polcyn, M. J., Bardet N., Amaghzaz M., Gonçalves O. A., Jourani E., Kaddumi H. F., Lindgren J., Mateus O., Meslouhf S., Morais M. L., Pereda-Suberbiola X., Schulp A. S., Vincent P., & Jacobs L. L. (2016).  An extremely derived plioplatecarpine mosasaur from the Maastrichtian of Africa and the Middle East. 5th Triennial Mosasaur Meeting- a global perspective on Mesozoic marine amniotes. 16-20(May 16-20, 2016), May 16-20, 2016., Uppsala, Sweden: Museum of Evolutiom, Uppsala University. Abstractpolcyn_et_al_2016_extremely_derived_mosasaur.pdf

n/a

Polcyn, M. J., Bardet N., Amaghzaz M., Gon{\c c}alves O. A., Jourani E., Kaddumi H. F., Lindgren J., Mateus O., Meslouhf S., Morais M. L., Pereda-Suberbiola X., Schulp A. S., Vincent P., & Jacobs L. L. (2016).  An extremely derived plioplatecarpine mosasaur from the Maastrichtian of Africa and the Middle East. 5th Triennial Mosasaur Meeting- a global perspective on Mesozoic marine amniotes. 16-20, May 16-20, 2016., Uppsala, Sweden: Museum of Evolutiom, Uppsala University. Abstract

n/a

Polcyn, M. J., Bardet N., Amaghzaz M., Gon\{\c c\}alves O. A., Jourani E., Kaddumi H. F., Lindgren J., Mateus O., Meslouhf S., Morais M. L., Pereda-Suberbiola X., Schulp A. S., Vincent P., & Jacobs L. L. (2016).  An extremely derived plioplatecarpine mosasaur from the Maastrichtian of Africa and the Middle East. 5th Triennial Mosasaur Meeting- a global perspective on Mesozoic marine amniotes. 16-20, May 16-20, 2016., Uppsala, Sweden Abstract
n/a
Polcyn, {M. J. }, Bardet N., Amaghzaz M., Gonçalves {A. O. }, Jourani E., Kaddumi {H. F. }, Lindgren J., Mateus O., Meslouhf S., & Morais {M. L. } (2016).  An extremely derived plioplatecarpine mosasaur from the Maastrichtian of Africa and the Middle East. 32–33. Abstract
n/a
Ceríaco, L. M. P., Gutiérrez E. E., Dubois A., Abdala C. S., Alqarni A. S., Adler K., et al. (2016).  Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences. Zootaxa. 4196, 435-445., Number 3 Abstract
n/a
2015
Araújo, R., Polcyn M. J., Lindgren J., Jacobs L. L., Schulp A. S., Mateus O., Gonçalves O. A., & Morais M. - L. (2015).  New aristonectine elasmosaurid plesiosaur specimens from the Early Maastrichtian of Angola and comments on paedomorphism in plesiosaurs. Netherlands Journal of Geosciences. FirstView, 1–16., 2 Abstractaraujo_et_al_2015_paedomorphism-libre.pdfWebsite

ABSTRACT New elasmosaurid plesiosaur specimens are described from the Early Maastrichtian of Angola. Phylogenetic analyses reconstruct the Angolan taxon as an aristonectine elasmosaurid and the sister taxon of an unnamed form of similar age from New Zealand. Comparisons also indicate a close relationship with an unnamed form previously described from Patagonia. All of these specimens exhibit an ostensibly osteologically immature external morphology, but histological analysis of the Angolan material suggests an adult with paedomorphic traits. By extension, the similarity of the Angolan, New Zealand and Patagonian material indicates that these specimens represent a widespread paedomorphic yet unnamed taxon.

Araújo, R., Polcyn M. J., Schulp A. S., Mateus O., Jacobs L. L., Gonçalves O. A., & Morais M. - L. (2015).  A new elasmosaurid from the early Maastrichtian of Angola and the implications of girdle morphology on swimming style in plesiosaurs. Netherlands Journal of Geosciences. FirstView, 1–12., 1 Abstractaraujo_et_al_2015_a_new_elasmosaurid_from_the_early_maastrichtian_of_angola.pdfWebsite

ABSTRACT We report here a new elasmosaurid from the early Maastrichtian at Bentiaba, southern Angola. Phylogenetic analysis places the new taxon as the sister taxon to Styxosaurus snowii, and that clade as the sister of a clade composed of (Hydrotherosaurus alexandrae (Libonectes morgani + Elasmosaurus platyurus)). The new taxon has a reduced dorsal blade of the scapula, a feature unique amongst elasmosaurids, but convergent with cryptoclidid plesiosaurs, and indicates a longitudinal protraction-retraction limb cycle rowing style with simple pitch rotation at the glenohumeral articulation. Morphometric phylogenetic analysis of the coracoids of 40 eosauropterygian taxa suggests that there was a broad range of swimming styles within the clade.

Young, M. T., Hua S., Steel L., Foffa D., Brusatte S. L., Thüring S., Mateus O., Ruiz-Omeñaca J. I., Havlik P., Lepage Y., & de Andrade M. B. (2015).  Addendum to ‘Revision of the Late Jurassic teleosaurid genus Machimosaurus (Crocodylomorpha, Thalattosuchia)’. Royal Society Open Science. 2, , Number 2: The Royal Society Abstractyoung_et_al_2015_addendum_to_revision_of_the_late_jurassic_teleosaurid_genus_machimosaurus_crocodylomorpha_thalattosuchia.pdfWebsite

n/a

Hendrickx, C., Mateus O., & Araújo R. (2015).  The dentition of megalosaurid theropods. Acta Palaeontologica Polonica. 60(3), 627–642. Abstracthendrickx_et_al_2015_theropod_teeth_app.pdfWebsite

Theropod teeth are particularly abundant in the fossil record and frequently reported in the literature. Yet, the dentition of many theropods has not been described comprehensively, omitting details on the denticle shape, crown ornamentation and enamel texture. This paucity of information has been particularly striking in basal clades, thus making identification of isolated teeth difficult, and taxonomic assignments uncertain. We here provide a detailed description of the dentition of Megalosauridae, and a comparison to and distinction from superficially similar teeth of all major theropod clades. Megalosaurid dinosaurs are characterized by a mesial carina facing mesiolabially in most mesial teeth, centrally positioned carinae on both most mesial and lateral crowns, a mesial carina terminating above the cervix, and short to well-developed interdenticular sulci between distal denticles. A discriminant analysis performed on a dataset of numerical data collected on the teeth of 62 theropod taxa reveals that megalosaurid teeth are hardly distinguishable from other theropod clades with ziphodont dentition. This study highlights the importance of detailing anatomical descriptions and providing additional morphometric data on teeth with the purpose of helping to identify isolated theropod teeth in the future.

Strganac, C., Jacobs L., Polcyn M., Mateus O., Myers T., Araújo R., Fergunson K. M., Gonçalves A. O., Morais M. L., Schulp A. S., da Tavares T. S., & Salminen J. (2015).  Geological Setting and Paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, Angola. Netherlands Journal of Geosciences. 94(1), 121-136. Abstractstrganac_et_al_2014_geological_setting_bentiaba_angola.pdfWebsite

The Bench 19 Bonebed at Bentiaba, Angola, is a unique concentration of marine vertebrates preserving six species of mosasaurs in sediments best correlated by magnetostratigraphy to chron C32n.1n between 71.4 and 71.64 Ma. The bonebed formed at a paleolatitude near 24°S, with an Atlantic width at that latitude approximating 2700 km, roughly half that of the current width. The locality lies on an uncharacteristically narrow continental shelf near transform faults that controlled the coastal outline of Africa in the formation of the South Atlantic Ocean. Biostratigraphic change through the Bentiaba section indicates that the accumulation occurred in an ecological time dimension within the 240 ky bin delimited by chron 32n.1n. The fauna occurs in a 10 m sand unit in the Mocuio Formation with bones and partial skeletons concentrated in, but not limited to, the basal 1–2 m. The sediment entombing the fossils is an immature feldspathic sand shown by detrital zircon ages to be derived from nearby granitic shield rocks. Specimens do not appear to have a strong preferred orientation and they are not concentrated in a strand line. Stable oxygen isotope analysis of associated bivalve shells indicates a water temperature of 18.5°C. The bonebed is clearly mixed with scattered dinosaur and pterosaur elements in a marine assemblage. Gut contents, scavenging marks and associated shed shark teeth in the Bench 19 Fauna indicate biological association and attrition due to feeding activities. The ecological diversity of mosasaur species is shown by tooth and body-size disparity and by δ13C analysis of tooth enamel, which indicate a variety of foraging areas and dietary niches. The Bench 19 Fauna was formed in arid latitudes along a coastal desert similar to that of modern Namibia on a narrow, tectonically controlled continental shelf, in shallow waters below wave base. The area was used as a foraging ground for diverse species, including molluscivorus Globidens phosphaticus, small species expected near the coast, abundant Prognathodon kianda, which fed on other mosasaurs at Bench 19, and species that may have been transient and opportunistic feeders in the area.

Hendrickx, C., Mateus O., & Araújo R. (2015).  A proposed terminology of theropod teeth (Dinosauria, Saurischia). Journal of Vertebrate Paleontology. e982797. Abstracthendrickx_et_al_2015_theropod_teeth_svp.pdfWebsite

n/a

Polcyn, M. J., Jacobs L. L., Schulp A. S., Mateus O., & Araújo R. (2015).  Tethyan and Weddellian biogeographic mixing in the Maastrichtian of Angola. Annual Meeting of the Society of Vertebrate Paleontology. 196., Dallas, TXpolcyn_etal2015_mix_fauna_angola_svp_abstract.pdf
Clemmensen, L. B., Milàn J., Adolfssen J. S., Estrup E. J., Frobøse N., Klein N., Mateus O., & Wings O. (2015).  The vertebrate-bearing Late Triassic Fleming Fjord Formation of central East Greenland revisited: stratigraphy, palaeoclimate and new palaeontological data. Geological Society, London, Special Publications. 434(1), 31-47. Abstractclemmensenetal2015greenland.pdfWebsite

In Late Triassic (Norian–Rhaetian) times, the Jameson Land Basin lay at 40° N on the northern part of the supercontinent Pangaea. This position placed the basin in a transition zone between the relatively dry interior of the supercontinent and its more humid periphery. Sedimentation in the Jameson Land Basin took place in a lake–mudflat system and was controlled by orbitally forced variations in precipitation. Vertebrate fossils have consistently been found in these lake deposits (Fleming Fjord Formation), and include fishes, dinosaurs, amphibians, turtles, aetosaurs and pterosaurs. Furthermore, the fauna includes mammaliaform teeth and skeletal material. New vertebrate fossils were found during a joint vertebrate palaeontological and sedimentological expedition to Jameson Land in 2012. These new finds include phytosaurs, a second stem testudinatan specimen and new material of sauropodomorph dinosaurs, including osteologically immature individuals. Phytosaurs are a group of predators common in the Late Triassic, but previously unreported from Greenland. The finding includes well-preserved partial skeletons that show the occurrence of four individuals of three size classes. The new finds support a late Norian–early Rhaetian age for the Fleming Fjord Formation, and add new information on the palaeogeographical and palaeolatitudinal distribution of Late Triassic faunal provinces.

Klein, H., Milàn J., Clemmensen L. B., Frobøse N., Mateus O., Klein N., Adolfssen J. S., Estrup E. J., & Wings O. (2015).  Archosaur footprints (cf. Brachychirotherium) with unusual morphology from the Upper Triassic Fleming Fjord Formation (Norian–Rhaetian) of East Greenland. Geological Society, London, Special Publications. 434, AbstractWebsite

The Ørsted Dal Member of the Upper Triassic Fleming Fjord Formation in East Greenland is well known for its rich vertebrate fauna, represented by numerous specimens of both body and ichnofossils. In particular, the footprints of theropod dinosaurs have been described. Recently, an international expedition discovered several slabs with 100 small chirotheriid pes and manus imprints (pes length 4–4.5 cm) in siliciclastic deposits of this unit. They show strong similarities with Brachychirotherium, a characteristic Upper Triassic ichnogenus with a global distribution. A peculiar feature in the Fleming Fjord specimens is the lack of a fifth digit, even in more deeply impressed imprints. Therefore, the specimens are assigned here tentatively to cf. Brachychirotherium. Possibly, this characteristic is related to the extremely small size and early ontogenetic stage of the trackmaker. The record from Greenland is the first evidence of this morphotype from the Fleming Fjord Formation. Candidate trackmakers are crocodylian stem group archosaurs; however, a distinct correlation with known osteological taxa from this unit is not currently possible. While the occurrence of sauropodomorph plateosaurs in the bone record links the Greenland assemblage more closer to that from the Germanic Basin of central Europe, here the described footprints suggest a Pangaea-wide exchange.Supplementary material: Three-dimensional model of cf. Brachychirotherium pes–manus set (from MGUH 31233b) from the Upper Triassic Fleming Fjord Formation (Norian–Rhaetian) of East Greenland as pdf, ply and jpg files (3D model created by Oliver Wings; photographs taken by Jesper Milàn) is available at https://doi.org/10.6084/m9.figshare.c.2133546

Hansen, B. B., Milàn J., Clemmensen L. B., Adolfssen J. S., Estrup E. J., Klein N., Mateus O., & Wings O. (2015).  Coprolites from the Late Triassic Kap Stewart Formation, Jameson Land, East Greenland: morphology, classification and prey inclusions. Geological Society, London, Special Publications. 434, AbstractWebsite

A large collection of vertebrate coprolites from black lacustrine shales in the Late Triassic (Rhaetian–Sinemurian) Kap Stewart Formation, East Greenland is examined with regard to internal and external morphology, prey inclusions, and possible relationships to the contemporary vertebrate fauna. A number of the coprolites were mineralogically examined by X-ray diffraction (XRD), showing the primary mineral composition to be apatite, clay minerals, carbonates and, occasionally, quartz in the form of secondary mineral grains. The coprolite assemblage shows multiple sizes and morphotypes of coprolites, and different types of prey inclusions, demonstrating that the coprolite assemblage originates from a variety of different producers.Supplementary material: A description of the size, shape, structure, texture, contents and preservation of the 328 specimens is available at https://doi.org/10.6084/m9.figshare.c.2134335

Hendrickx, C., Aráujo R., & Mateus O. (2015).  The non-avian theropod quadrate I: Standardized terminology with an overview of the anatomy and function. PeerJ. 2015, , Number 9 Abstract
n/a
Hendrickx, C., Mateus O., & Araujo R. (2015).  A proposed terminology of theropod teeth (Dinosauria, Saurischia). Journal of Vertebrate Paleontology. 35, , Number 5 Abstract
n/a
Clemmensen, L. B., Milàn J., Adolfssen J. S., Estrup E. J., Frobøse N., Klein N., Mateus O., & Wings O. (2015).  The vertebrate-bearing Late Triassic Fleming Fjord Formation of central East Greenland revisited: stratigraphy, palaeoclimate and new palaeontological data. Geological Society, London, Special Publications. 434, AbstractWebsite

In Late Triassic (Norian–Rhaetian) times, the Jameson Land Basin lay at 40° N on the northern part of the supercontinent Pangaea. This position placed the basin in a transition zone between the relatively dry interior of the supercontinent and its more humid periphery. Sedimentation in the Jameson Land Basin took place in a lake–mudflat system and was controlled by orbitally forced variations in precipitation. Vertebrate fossils have consistently been found in these lake deposits (Fleming Fjord Formation), and include fishes, dinosaurs, amphibians, turtles, aetosaurs and pterosaurs. Furthermore, the fauna includes mammaliaform teeth and skeletal material. New vertebrate fossils were found during a joint vertebrate palaeontological and sedimentological expedition to Jameson Land in 2012. These new finds include phytosaurs, a second stem testudinatan specimen and new material of sauropodomorph dinosaurs, including osteologically immature individuals. Phytosaurs are a group of predators common in the Late Triassic, but previously unreported from Greenland. The finding includes well-preserved partial skeletons that show the occurrence of four individuals of three size classes. The new finds support a late Norian–early Rhaetian age for the Fleming Fjord Formation, and add new information on the palaeogeographical and palaeolatitudinal distribution of Late Triassic faunal provinces.

2014
Hendrickx, C., Araújo R., & Mateus O. (2014).  The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses. PeerJ PrePrints. 2, e380v2., 2014 AbstractWebsite

The skull-bone quadrate in nonavian theropods is very diverse morphologically alongside the disparity of the group as a whole. However this disparity has been underestimated for taxonomic purposes. In order to evaluate the phylogenetic potential and investigate the evolutionary transformations of the quadrate, we conducted a Catalano-Goloboff phylogenetic morphometric analysis as well as a cladistic analysis using 98 discrete quadrate related characters. The cladistic analysis provides a fully resolved tree mirroring to some degree the classification of nonavian theropods. The quadrate morphology by its own provides a wealth of data with strong phylogenetic signal and allows inference of major trends in the evolution of this bone. Important synapomorphies include: for Abelisauroidea, a lateral ramus extending to the ectocondyle; for Tetanurae, the absence of the lateral process; for Spinosauridae, a medial curvature of the ventral part of the pterygoid ramus occurring just above the mandibular articulation; for Avetheropoda, an anterior margin of the pterygoid flange formed by a roughly parabolic margin; and for Tyrannosauroidea, a semi-oval pterygoid flange shape in medial view. The Catalano-Goloboff phylogenetic morphometric analysis reveals two main morphotypes of the mandibular articulation of the quadrate linked to function. The first morphotype, characterized by an anteroposteriorly broad mandibular articulation with two ovoid/subcircular condyles roughly subequal in size, is found in Ceratosauria, Tyrannosauroidea and Oviraptorosauria. This morphotype allows a very weak displacement of the mandible laterally. The second morphotype is characterized by an elongate and anteroposteriorly narrow mandibular articulation and a long and parabolic/sigmoid ectocondyle. Present in Megalosauroidea, Carcharodontosauridae and Dromaeosauridae, this morphotype permits the lower jaw rami to be displaced laterally when the mouth opened.

Polcyn, M. J., Jacobs L. L., Strganac C., Mateus O., Myers T. S., May S., Araújo R., Schulp A. S., & Morais M. L. (2014).  Geological and paleoecological setting of a marine vertebrate bonebed from the Lower Maastrichtian at Bentiaba, Angola. Secondary Adaptation of Tetrapods to Aquatic Life. , 2-4 Jun 2014, Washington DC, USA
Hendrickx, C., Mateus O., & Araújo R. (2014).  The dentition of megalosaurid theropods, with a proposed terminology on theropod teeth. XII EAVP Meeting XII Annual Meeting of the European Association of Vertebrate Palaeontologists – Abstract Book. p. 75., Torino 24-28 June 2014hendrickx_et_al_2014_megalosaurid_teeth_eavp.pdf
Marinheiro, J., Mateus O., Alaoui A., Amani F., Nami M., & Ribeiro C. (2014).  Elephas and other vertebrate fossils near Taghrout, Morocco. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 178.marinheiro_et_al._2014_elephas_and_other_vertebrate_fossils_near_taghrout.pdf
Polcyn, M., Jacobs L., Strganac C., Mateus O., Myers S., May S., Araujo R., Schulp A., & Morais M. (2014).  Geology and paleoecology of a marine vertebrate bonebed from the lower Maastrichtian of Angola. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 206.polcyn_et_al._2014_geology_and_paleoecology_of_a_marine_vertebrate_bonebed_from_the_lower_maastrichtian_of_angola.pdf
Mateus, O., Clemmensen L., Klein N., Wings O., Frobøse N., Milàn J., Adolfssen J., & Estrup E. (2014).  The Late Triassic of Jameson Land revisited: new vertebrate findings and the first phytosaur from Greenland. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 182.mateus_et_al2014-_jameson_land_revisited_-_svp_2014.pdf
Marinheiro, J., Mateus O., Alaoui A., Amani F., Nami M., & Ribeiro C. (2014).  New Quaternary fossil sites from the Middle Atlas of Morocco. Comunicações Geológicas. 101, Especial I, 485-488. Abstractmarinheiro_et_al_2014_new_quaternary_fossil_sites_from_the_middle_atlas_of_morocco.pdf

The paleontological richness of Morocco has been scientifically known since at least the early 20th century. The region of the Middle Atlas, more specifically the Boulemane area, has been however only sparsely studied since the 1960s when it provided vertebrate fossils from the Middle Jurassic. In September 2013, a Moroccan-Portuguese expedition to the village of Taghrout, Boulemane, made excavations in a Pleistocene fossil site that once was a small high-altitude sedimentary basin, uncharted in previous geological maps. The excavations yielded bone material from large mammals, the most common findings are elephants ascribed to Elephas, but artiodactyls, turtles, and in-situ Acheulean tools were also collected. This represents a new and important paleontological and archeological site. In addition to the discoveries of Taghrout, the expedition also retrieved Quaternary vertebrate material from a nearby cave and found new Jurassic localities, with arcosaur bones and dinosaur footprints, in El Mers.

Polcyn, M. J., Jacobs L. L., Ara´ujo R., Schulp A. S., & Mateus O. (2014).  Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology, Palaeoecology. 400, 17-27. Abstractpolcyn_et_al_2014_physical_drivers_mosasaurs.pdf

Mosasaurs are marine squamates with a 32.5 million-year history from their appearance at 98 Ma to their extinction at the K-Pg boundary (65.5 Ma). Using a database of 43 generic and 94 species-level taxa, we compare the taxonomic diversity and patterns of morphological disparity in mosasaurs with sea level, sea surface temperature, and stable carbon isotope curves for the Upper Cretaceous to explore factors that may have influenced their evolution. No single factor unambiguously accounts for all radiations, diversification, and extinctions; however, the broader patterns of taxonomic diversification and
morphological disparity point to niche differentiation in a “fishing up” scenario under the influence of “bottom-up” selective pressures. The most likely driving force in mosasaur evolution was high productivity in the Late Cretaceous, driven by tectonically controlled sea levels and climatically controlled ocean stratification and nutrient delivery. When productivity collapsed at the end of the Cretaceous, coincident with bolide impact, mosasaurs became extinct.

Young, M. T., Hua S., Steel L., Foffa D., Brusatte S. L., Thüring S., Mateus O., Ignacio-Ruiz Omeñaca J., Lepage Y., Havilk P., & Andrade M. B. (2014).  Revision of the Late Jurassic teleosaurid genus Machimosaurus (Crocodylomorpha, Thalattosuchia). Royal Society Open Science. 1(140222), 1-42.young_et_al_2014_machimosaurus_crocodylomorph_revision.pdf
Ribeiro, V., Mateus O., Holwerda F., Araújo R., & Castanhinha R. (2014).  Two new theropod egg sites from the Late Jurassic Lourinhã Formation, Portugal. Historical Biology. 26(2), 206-217. Abstractribeiro_et_al_2014_theropod_eggs_nest_portugal.pdfWebsite

Two new Late Jurassic (uppermost Late Kimmeridgian) dinosaur eggshell sites are described, Casal da Rola and Porto das Barcas, both near Lourinha˜, central-west Portugal. Casal da Rola yields eggshells with an obliquiprismatic morphotype comparable to those from a nest with the associated fossil embryos from Paimogo, tentatively assigned to the theropod Lourinhanosaurus antunesi. The Porto das Barcas eggshells have a dendrospherulitic morphotype with a prolatocanaliculate pore system. This morphotype was also recognised in eggshells from a clutch with associated Torvosaurus embryos at the Porto das Barcas locality. A preliminary cladistic analysis of eggshell morphology suggests theropod affinities for the Casal da Rola eggs, but is unable to resolve the phylogenetic position of the Porto das Barcas eggs. The eggshells at both sites are preserved in distal flood plain mudstones and siltstones. Carbonate concretions within the deposits indicate paleosol development.

Hendrickx, C., Mateus O., & Araújo R. (2014).  The dentition of Megalosauridae (Theropoda: Dinosauria). {APP}. : Polska Akademia Nauk Instytut Paleobiologii (Institute of Paleobiology, Polish Academy of Sciences) AbstractWebsite
n/a
Strganac, C., Jacobs L. L., Polcyn M. J., Mateus O., Myers T. S., Salminen J., May S. R., Araújo R., Ferguson K. M., Gon?alves A. O., Morais M. L., Schulp A. S., & da Silva Tavares T. (2014).  Geological setting and paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, Angola. Geologie en Mijnbouw/Netherlands Journal of Geosciences. 94, 121-136., Number 1 Abstract
n/a
Araújo, R., Polcyn M. J., Lindgren J., Jacobs L. L., Schulp A. S., Mateus O., Gon?alves A. O., & Morais M. - L. (2014).  New aristonectine elasmosaurid plesiosaur specimens from the Early Maastrichtian of Angola and comments on paedomorphism in plesiosaurs. Geologie en Mijnbouw/Netherlands Journal of Geosciences. 94, 93-108., Number 1 Abstract
n/a