Coauthored Publications with: Sennour

Book

Hughes, S, Acker AV, Chastre C, Gasperi A, Jones G, Karutz H, Krohn J, Laliberté D, Lindstrom G, Ronchetti A, Sennour L, Seshappa V, Sthaladipti S, Suika A, Tillman M, Tsoukantas S.  2017.  fib Bulletin 84. Precast Insulated Sandwich Panels. fib Bulletin 84. , Number fib Bulletin, Lausanne: International Federation for Structural Concrete (fib) Abstract

Precast concrete sandwich panels started being used as cladding for buildings, together with the rise of industrial prefabrication, during the mid-20th century. Since then, society and industry have become increasingly aware of energy efficiency in all fields, for both affordability and sustainability consciousness. As such, buildings have been subject to increasingly stringent requirements with the technology of sandwich panels kept continually at the forefront.
Nowadays, sandwich panels have reached the highest standards of functional performance as structural efficiency, flexibility in use, the speed as well as of aesthetic appeal. These combine in building construction with the well-known advantages of prefabrication; such as construction, quality consciousness, durability and sustainability. Sandwich panels have gained more and more important in their field, thus representing quite a significant application within the industry of prefabrication and an important share of the market.
The Commission ‘Prefabrication’ is keen to promote the development of all precast structural concrete products and to transfer the knowledge to practical design and construction. Now filling a strategic gap, by issuing this Guide to Good Practice, which includes design considerations, structural analysis, building physics, use of materials, manufacturing methods, equipment, field performance, and provides a comprehensive overview of the information currently available worldwide. The Commission is particularly proud that this document is a result of close cooperation with PCI and that it will be published by both fib and PCI. This cooperation started six years ago, first with comparing the different approaches to several issues, then progressively integrating up to producing common documents, like this one, that wasn’t yet treated in a specific Guide by either body.

Tsoukantas, S, Toniolo G, Pampanin S, Ghosh SK, Sennour L, D’Arcy T, Sthaladipti S, Menegotto M, Özden Ş, Lúcio V, Chastre C, Dritsos S, Psycharis I, Topintzis T, Kremmyda G, Fernández-Ordóñez D, de Chefdebien A, Hughes S, Rajala L.  2016.  fib Bulletin 78. Precast-concrete buildings in seismic areas, 2016. fib bulletin. :273., Number fib Bulletin 78, Lausanne: International Federation for Structural Concrete (fib) Abstractfib_bulletin78.jpgWebsite

This document has a broad scope and is not focussed on design issues. Precast construction under seismic conditions is treated as a whole. The main principles of seismic design of different structural systems, their behavior and their construction techniques are presented through rules, construction steps and sequences, procedures, and details that should lead to precast structures built in seismic areas complying with the fundamental performance requirements of collapse prevention and life safety in major earthquakes and limited damage in more frequent earthquakes.The content of this document is largely limited to conventional precast construction and, although some information is provided on the well-known “PRESSS technology” (jointed ductile dry connections), this latter solution is not treated in detail in this document.The general overview, contained in this document, of alternative structural systems and connection solutions available to achieve desired performance levels, intends to provide engineers, architects, clients, and end-users (in general) with a better appreciation of the wide range of applications that modern precast concrete technology can have in various types of construction from industrial to commercial as well as residential. Lastly, the emphasis on practical aspects, from conceptual design to connection detailing, aims to help engineers to move away from the habit of blindly following prescriptive codes in their design, but instead go back to basic principles, in order to achieve a more robust understanding, and thus control, of the seismic behaviour of the structural system as a whole, as well as of its components and individual connections.