Coauthored Publications with: Biscaia

Conference Proceedings

Biscaia, H, Silva MG, Chastre C.  2009.  Bond GFRP-Concrete under environmental exposure. 15th International Conference on Composite Structures ICCS 15. , Porto: FEUP Abstractbiscaia2009sich_-_iccs15.pdf

Fiber reinforced polymers (FRP) are often used to strengthen RC structures.
Despite intense research, durability of reinforced concrete (RC) retrofitted with FRP remains insufficiently known. Long time behavior of the bond laminate-concrete, in flexural strengthening, under environmental action is not well known, conditioning Codes and engineers. An experimental program that subjected RC beams, externally reinforced with Glass FRP (GFRP) strips, to temperature and salt water cycles, for up to 10000h is reported.
At selected intermediate times, the RC beams were loaded to failure in bending. Rupture took place, normally, by tensile failure of concrete at a short distance from the interface with GFRP. The results showed that freeze-thaw cycles were the most severe of the environmental
conditions. The study also generated also non-linear bond-slip relationships from the experimental data. Numerical modeling has been undertaken, based on a commercial code.
The model is based on smeared cracking. Parameters needed for the characterization, namely cohesion and friction angle, were obtained from shear tests conceived for the effect.

Silva, M. A. G., Biscaia HC, Chastre C.  2012.  Degradação da aderência entre compósitos de GFRP e betão devido a condições ambientais severas. Betão Estrutural 2012. , Porto: FEUP Abstractsilva2012bich_-_be2012_-_feup.pdf

A degradação da ligação entre compósitos de matriz polimérica reforçada por fibras (FRP) e o betão é uma das principais causas de possível rotura das vigas e lajes de betão armado reforçadas
externamente por compósitos de FRP. Desde há mais de 10 anos que se estuda, por isso, na UNL o
comportamento dessa ligação, integrado em programa mais alargado de estudo da durabilidade deste tipo de reforço, especialmente quando sujeito a condições ambientais severas que se simulam por processos artificialmente acelerados no laboratório. Em particular a degradação da aderência e o possível descolamento precoce do reforço têm sido modelados física e computacionalmente com principal incidência no uso de fibras de vidro (GFRP) e resina epoxídica. Nesta comunicação mostram-se resultados obtidos em termos de capacidade de carga, força transmitida ao reforço e tensões de aderência após envelhecimentos de pequenas vigas de betão armado (BA) por ciclos de nevoeiro salino, ciclos seco/molhado em solução salina, ciclos de temperatura entre +7,5ºC e +47,5ºC e gelo-degelo de -10ºC a +30ºC. Faz-se recomendação quanto à extensão máxima para diferentes envelhecimentos. Apresenta-se comparação entre resultados de modelação numérica e experimental.

Almeida, G, Biscaia H, Chastre C, Fonseca J, Melício F.  2010.  Displacement Estimation of a RC beam test based on TSS algorithm. CISTI'2010 - 5ª Conferencia Ibérica de Sistemas y Tecnologías de Información. , Santiago de Compostela Abstract

The traditional methodology used in civil engineering measurements requires a lot of equipment and a very complex procedure especially if the number of target points increase. Since the beginning of the current century, several studies have been conducted in the area of photogrametry using digital image
correlation associated with block motion algorithms to estimate displacements in reinforced concrete (RC) beams during a load test. Using image processing techniques it is possible to measure the whole area of interest and not only a few points of the tests materials. In this paper, block-matching algorithms are used in order to compare the results from photogrametry techniques and the data obtained with linear voltage displacement transducer (LVDT) sensors during the load tests of RC beams, which are very common to find in civil engineering laboratories.

Journal Article

Yang, Y, Biscaia H, Chastre C, Silva MAG.  2017.  Bond characteristics of CFRP-to-steel joints. Journal of Constructional Steel Research. 138:401-419. Abstract

Carbon Fiber Reinforced Polymer (CFRP) composites have a large potential for strengthening and retrofitting steel parts but due to their premature debonding from steel, further data and research are still required for wider application in such situations. In the present paper, the bond characteristics of CFRP-to-steel joints in pull-pull loaded conditions were studied. Monotonic loading of the double strap joints with different bond lengths was applied and the failure modes and interfacial bond-slip curves were obtained. A tri-linear bondslip model is proposed and it was derived from the experimental data. A closed-form solution approach is also proposed based on the tri-linear bond-slip model. The strength of the CFRP-to-steel interface, the distribution of the relative displacements between bonded materials, the strains developed in the CFRP laminate and the bond stresses along the interface are reported and the closed-form solution is compared with the experimental results. Two cases are selected for presentation: (i) one with the bond length greater than the effective bond length; and, inversely, (ii) one with bond length which is shorter than the effective bond length. The results predicted by the closed-form solutions are shown to be accurate enough when compared to the experiments.

Monteiro, A, Chastre C, Biscaia H, Franco N.  2017.  Reforço de vigas em betão armado com armaduras exteriores de FRP, Jan. 2017. Revista Internacional TechITT. 15:48-60., Number 40 AbstractWebsite

A utilização de Polímeros Reforçados com Fibras (FRP) no reforço de estruturas de Betão Armado (BA) tem tido cada vez mais aceitação devido à sua elevada resistência e rigidez, baixo peso específico e excelente resistência aos efeitos dos agentes ambientais. No entanto, actualmente, é comum utilizarem-se técnicas de reforço que dificilmente permitem tirar partido da resistência total destes materiais. Com o objectivo de explorar a capacidade total de Polímeros Reforçados com Fibras de Carbono (CFRP), foram estudadas e desenvolvidas duas novas técnicas de reforço de vigas à flexão designadas por Continuous Reinforcement Embedded at Ends (CREatE) e Horizontal Near Surface Mounted Reinforcement (HNSMR). Posteriormente realizou-se um estudo comparativo entre o desempenho destes sistemas de reforço e o de duas outras técnicas já estudadas e usuais, nomeadamente os sistemas Externally Bonded Reinforcement (EBR) e Near Surface Mounted Reinforcement (NSMR). A técnica CREatE provou ser a mais eficaz de todas as alternativas testadas mobilizando a totalidade do compósito de CFRP e dotando as vigas de BA com uma maior capacidade resistente e com uma ductilidade mais elevada.Como complemento deste trabalho experimental, desenvolveu-se também um programa de cálculo em MATLAB, capaz de simular o problema em estudo através de um modelo numérico de análise não linear através do equilíbrio de secções. A representatividade dos dados obtidos foi verificada através de uma análise comparativa entre os valores numéricos e os obtidos experimentalmente.The use of Fiber Reinforced Polymers (FRP) in order to strengthen Reinforced Concrete (RC) structures has been increasingly accepted due to their strength and stiffness, low weight and excellent resistance to the effects of environmental aggressive agents. However, the bonding techniques available and described in the literature can not allow the full use of the mechanical properties of these materials and premature failures are often observed and described by several researchers. In order to explore the full capacity of CFRP composites, two new bonding strengthening techniques of RC beams when subjected to 4-point bending tests were studied and developed. For these new techniques, the designation of Continuous Reinforcement Embedded at Ends (CREatE) and Horizontal Near Surface Mounted Reinforcement (HNSMR) has been assigned. Posteriorly, a comparative study has been carried out between those strengthening systems performance and two traditional techniques, namely, the Externally Bonded Reinforcement (EBR) and Near Surface Mounted Reinforcement (NSMR). The CREatE technique has proved to be the most effective of all alternatives tested, with the full utilization of the CFRP composite and the highest strength, combined with the highest ductility. A code using MATLAB software was developed as a complement of this experimental work, which is able to simulate the problem under study through a nonlinear numerical model based on the equilibrium of sections. The representativeness of the numerical data has been verified afterwards through a comparative analysis between those and the experimental results.

Biscaia, HC, Chastre C, Silva MAG.  2013.  Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfaces. Composites Part B: Engineering. 50:210-223. AbstractWebsite

The paper analyses numerical solutions for the process leading to debonding failure of fiber reinforced polymers (FRP)-to-concrete interfaces in shear tests with the FRP plate subjected to a tensile load at one end. Any realistic local nonlinear bond-slip law can be used in the numerical analysis proposed in the present study. However, only a Popovics’ type expression is employed in the numerical process due to its use in different studies found in the literature. Effective bond length (Leff) is discussed and an expression depending on the Popovics’ constant (nP) is proposed to calculate it. Assuming a fracture in pure Mode II, the debonding process is analyzed in detail and distributions of bond stresses and strains in the FRP plate along the interface are presented. The load-displacement behaviour is also presented and the influence of the local bond-slip law on the debonding process is discussed.

Biscaia, H, Chastre C, Borba I, Silva C, Cruz D.  2016.  Experimental evaluation of bonding between CFRP laminates and different structural materials. Journal of Composites for Construction. 20:04015070., Number 3 AbstractWebsite

This study presents an analysis of Carbon Fiber Reinforced Polymers (CFRP)-to-parent material interfaces based on 40 single-lap shear tests intended to highlight the strength of the interfaces under fracture mode II. Three different substrates are analyzed: timber;concrete and steel, using the same CFRP laminates and adhesive agent. The Externally Bonded Reinforcement (EBR) technique was used throughout the study. The results show that the CFRP-to-timber interfaces had the highest strength but also showed that these interfaces need a longer bonded length in order to reach maximum strength, i.e., CFRP-to-timber interfaces had the longest effective bond length. The local non-linear bond-slip curve of CFRP-to-concrete can be approximated to exponential curves, whereas the CFRP-to-timber or steel interfaces showed tri-linear and bi-linear bond-slip relations, respectively. Also, the CFRP-to-timber interfaces revealed the highest fracture energy.

Biscaia, H, Chastre C, Silva C, Franco N.  2018.  Mechanical Response of Anchored FRP bonded joints: A Nonlinear Analytical Approach. Mechanics of Advanced Materials and Structures. Abstract

The paper presents a nonlinear analytical solution for the prediction of the full-range debonding response of mechanically-anchored FRP composites from the substrate. The nonlinear analytical approach predicts, for any monotonic loading history or bonded length the relative displacements (or slips) between materials, the strains in the FRP composite, the bond stresses within the interface and the stresses developed in the substrate. The load-slip responses FRP-to-substrate interfaces with a short and a long bonded lengths are motive of analysis and discussion. The solutions obtained from the proposed approach are also compared with other experimental results found in the literature.

Biscaia, HC, Chastre C, Silva C, Franco N.  2018.  Mechanical response of anchored FRP bonded joints: A nonlinear analytical approach, 2018/02/17. Mechanics of Advanced Materials and Structures. 25:238-252., Number 3: Taylor & Francis AbstractWebsite

This article presents a nonlinear analytical solution for the prediction of the full-range debonding response of mechanically anchored, fiber-reinforced polymer (FRP) composites from the substrate. The nonlinear analytical approach predicts, for any monotonic loading history or bonded length, the relative displacements (or slips) between materials, the strains in the FRP composite, the bond stresses within the interface, and the stresses developed in the substrate. The load-slip responses of FRP-to-substrate interfaces with short and long bonded lengths are motives of analysis and discussion. The solutions obtained from the proposed approach are also compared with other experimental results found in the literature.

Biscaia, HC, Silva MAG, Chastre C.  2014.  An experimental study of GFRP-to-concrete interfaces submitted to humidity cycles, 4//. Composite Structures. 110(April):354-368. AbstractWebsite

Systems externally reinforced by bonded fibre reinforced polymers (FRP) are widely used in the retrofitting and strengthening of reinforced concrete (RC) structures. A drawback of the usage of this technique lies on the uncertainty of the long term behaviour of those reinforcements. Researchers have paid heed to this aspect and a number of tests and alternative techniques have recently been described. An experimental programme developed to supplement work of the authors recently published and which focused on specimens not submitted to aggressive environments is described. The specimens used have the same geometry as in the previous paper, but they were exposed to salt fog cycles and dry/wet cycles with salt water for periods of 3000 h, 5000 h and 10,000 h. The interface of the glass fiber polymeric composite (GFRP)-to-concrete was characterized after the systems underwent such aggressive conditions. The GFRP wrap comprised of two layers and wet lay-up technique was used on its preparation and application. The cohesion and friction angle for GFRP-to-concrete interfaces were measured tat selected stages of ageing process and envelope failure laws were obtained based on the Mohr–Coulomb failure criterion. Changes of 27% in cohesion and 8% in the friction angle were found due to the attack of the interface and consequences of the changes are examined.

Biscaia, H, Chastre C.  2018.  A simple analytical approach for creep analysis of EB-FRP systems. Key Engineering Materials . Abstract

Based on a few experimental results available in the literature, this work presents a simple analytical approach that allows the study of the long-term behaviour of CFRP-to-concrete interfaces under an initial sustaining load. Only the elastic regime is studied, which means that the interfacial maximum bond stress and maximum slip are never exceeded. Therefore, the maximum initial load to be sustained by the joints is limited by its corresponding elastic value. The analytical results provided by the proposed model are compared with some experimental results found in the literature. The results showed strain redistribution throughout the bonded length over the time.

Biscaia, HC, Chastre C, Silva MAG.  2012.  Double shear tests to evaluate the bond strength between GFRP/concrete elements. Composite Structures. 94:681-694., Number 2 AbstractWebsite

Externally bonded reinforced systems have been widely used in civil engineering. However, the problems associated with bond between structural elements are not yet fully solved. As a consequence, many researchers have been proposing tests and techniques to standardize procedures and reach better agreement for design purposes. In the present paper, an experimental program is described that was developed to characterize the glass FRP/concrete interface by double shear tests made on 15 cm side cubes with GFRP bonded on two opposite faces. The GFRP wrap had two layers applied by the wet lay-up technique and three classes of concrete were considered. With the support of the experimental program, cohesion and friction angle for GFRP–concrete interfaces were found leading to different envelope failure laws, based on the Mohr–Coulomb failure criterion for each concrete class, capable of predicting GFRP debonding. Results are discussed.

Biscaia, HC, Chastre C, Viegas A.  2015.  A new discrete method to model unidirectional FRP-to-parent material bonded joints subjected to mechanical loads, 3//. Composite Structures. 121:280-295. AbstractWebsite

Nowadays fiber reinforced polymer (FRP) composites play an important role in the strengthening of structures. Different methods can be used to apply these materials: the externally bonded reinforcement (EBR), and the near surface mounted (NSM) using strips and NSM rods. There are only a few studies comparing these methods or presenting an efficient model to simulate these strengthening techniques. This study looks mainly at the analysis of the interface between FRP-to-parent material bonded joints. The paper examines, through a new discrete model based on axial and shear springs, the performance of FRP-to-parent material bonded joints for EBR or NSM techniques using strips or composite rods. In order to implement the model a routine in MATLAB was developed and several bond–slip curves were assumed. The results revealed that load–slip curves or bond stresses, strains or slippages along the bonded length obtained from several bond–slip curves are similar to the analytical and other numerical solutions found in literature. In what concerns the adhesion between two different materials, and assuming the same bond characteristics for the three fiber strengthening techniques, the NSM system using FRP strips had the highest maximum load transmitted to the FRP strip combined with the lowest effective bond length. The results obtained from the proposed model were also very accurate with that obtained from an analytical solution found in literature that simulates the debonding phenomenon of FRP-to-concrete interfaces between to adjacent cracks.

Chastre, C, Biscaia H, Franco N.  2017.  Reforço de Vigas de Betão Armado com Armaduras Pós‑Instaladas de Aço Inox ou de Compósitos de FRP. Mecânica Experimental. 28:39-46. AbstractWebsite

Neste artigo apresentam-se e analisam-se um conjunto de ensaios realizados em vigas de betão armado reforçadas com armaduras pós-instaladas de aço ou de FRP, incluindo os referentes a uma nova técnica (CREatE) desenvolvida na FCT NOVA. Os resultados experimentais permitiram concluir que a técnica CREatE possibilita aumentos de resistência e ductilidade consideráveis face às técnicas tradicionais.

Almeida, G, Melício F, Biscaia H, Chastre C, Fonseca JM.  2016.  In-Plane Displacement and Strain Image Analysis, 24 February 2015. Computer-Aided Civil and Infrastructure Engineering. 31:292-304., Number 4 AbstractWebsite

Measurements in civil engineering load tests usually require considerable time and complex procedures. Therefore, measurements are usually constrained by the number of sensors resulting in a restricted monitored area. Image processing analysis is an alternative way that enables the measurement of the complete area of interest with a simple and effective setup. In this article photo sequences taken during load displacement tests were captured by a digital camera and processed with image correlation algorithms. Three different image processing algorithms were used with real images taken from tests using specimens of PVC and Plexiglas. The data obtained from the image processing algorithms were also compared with the data from physical sensors. A complete displacement and strain map were obtained. Results show that the accuracy of the measurements obtained by photogrammetry is equivalent to that from the physical sensors but with much less equipment and fewer setup requirements.

Biscaia, HC, Cruz D, Chastre C.  2016.  Analysis of the debonding process of CFRP-to-timber interfaces, 6/15/. Construction and Building Materials. 113:96-112. AbstractWebsite

The use of Fiber Reinforced Polymers (FRP) in the strengthening of timber structures is quite recent and few studies have discussed the debonding between these materials. The analysis of the Mode II debonding process between FRP composites and timber elements may be of great importance because this mode is predominant in the case, for instance, of the bending of beams. Knowing the appropriate bond-slip model to use on the estimation of the performance of FRP-to-timber interfaces is greatly relevant. Under such circumstances, a detailed knowledge of all the states that CFRP-to-timber interfaces are subjected to is important as well. The current work gives answers to these aspects proposing an analytical solution based on a tri-linear bond-slip model that is capable of describing precisely the full-range debonding behavior of FRP-to-timber interfaces. Thus, the purpose of this study is to contribute to existing knowledge with an analytical solution capable of describing the full-range debonding process between a FRP composite and a substrate. The analytical solutions herein proposed are also compared with the results obtained from several experiments based on single-lap shear tests. Comparisons at different load levels and different bonded lengths are presented. The slips, strains in the CFRP composite and bond stress distributions within the bonded interface are emphasized in the text. The complete load-slip response of CFRP-to-timber interface is also analyzed. Each state of the debonding process is described and each one is identified in the load-slip curve.

Yang, Y, Silva MAG, Biscaia H, Chastre C.  2018.  CFRP-to-steel bonded joints subjected to cyclic loading: An experimental study, 1 August 2018. Composites Part B: Engineering. 146:28–41. AbstractWebsite

Pseudo-cyclic and cyclic loading were applied to CFRP-to-steel bonded joints built with two different CFRP laminates. In this paper, the strength capacity and bond-slip curves are presented and compared. The modes of failure are also described and associated with the types of material used, and the observed performances are correlated. The analysis of the results showed a threshold value for loading and amplitude level, below which the cyclic loading caused no detectable damage. For cycles above that limit, the region of the joints around the loaded end presented degradation reflected on the bond-slip stiffness and on the increase of residual deformation. It was found that the normalized dissipated energies either obtained from the bond-slip relationship or from the load-slip response had the same trend. The experimental data allowed also to establish a relationship between the damage developed within the interface and the normalized slip. A preliminary estimate of fatigue limit based on those data is suggested.

Yang, Y, Silva MAG, Biscaia H, Chastre C.  2019.  Bond durability of CFRP laminates-to-steel joints subjected to freeze-thaw, 2019/03/15/. Composite Structures. 212:243-258. AbstractWebsite

The degradation mechanisms of bonded joints between CFRP laminates and steel substrates under severe environmental conditions require more durability data and studies to increase the database and better understand their causes. Studies on bond properties of double-strap CFRP-to-steel bonded joints with two different composite materials as well as adhesive coupons subjected to freeze-thaw cycles for 10,000 h were conducted to reduce that gap. In addition, the equivalent to the number of thermal cycles and their slips induced in the CFRP laminates was replicated by an equivalent (mechanical) loading-unloading history condition imposed by a static tensile machine. The mechanical properties of the adhesive coupons and the strength capacity of the bonded joints were only slightly changed by the artificial aging. It was confirmed that the interfacial bond strength between CFRP and adhesive is critically related to the maximum shear stress and failure mode. The interfacial bond strength between adhesive and steel degraded with the aging. However, the equivalent thermal cyclic bond stress caused no detectable damage on the bond because only the interfacial elastic regime was actually mobilized, which confirmed that pure thermal cycles aging, per se, at the level imposed, have a low impact on the degradation of CFRP-to-steel bonded joints.

Larrinaga, P, Chastre C, Biscaia HC, San-José JT.  2014.  Experimental and Numerical Modelling of Basalt Textile Reinforced Mortar Behavior Under Uniaxial Tensile Stress. Materials & Design. 55(March):66-74. AbstractWebsite

During the last years several projects and studies have improved the knowledge about Textile Reinforced Mortar (TRM) technology. TRM has already been used in strengthening masonry and reinforced concrete structural elements such as walls, arches, columns and beams. This material is presented as a real alternative to the use of fibre-reinforced polymers (FRP) in situations where these composites have presented some drawbacks or their use is banned. Textile Reinforced Mortar show a complex mechanical behaviour derived from the heterogeneity of the constituent materials. This paper aims to deepen the knowledge of this composite material in terms of tensile behaviour. Following this scope, this paper presents an experimental campaign focused on thirty one TRM specimens reinforced with four different reinforcing ratios. The results are analysed and contrasted with two distinct models. i) the Aveston-Cooper-Kelly theory (ACK) which is based on a tri-linear analytical approach; and ii) a nonlinear numerical simulation with a 3D Finite Element code. The Finite Element Analysis (FEA) of the TRM tensile tests also showed no significant dependence on the basalt-to-mortar interface, i.e., the choice of a bond-slip curve in order to reproduce the bond stresses and slippages along the interface is irrelevant and it can be simply considered as rigid interface.

Biscaia, H, Franco N, Chastre C.  2018.  Stainless steel bonded to concrete: An experimental assessment using the DIC technique, January 30. International Journal of Concrete Structures and Materials. 12, Number 1 AbstractWebsite

The durability performance of stainless steel makes it an interesting alternative for the structural strengthening of reinforced concrete. Like external steel plates or fibre reinforced polymers, stainless steel can be applied using externally bonded reinforcement (EBR) or the near surface mounted (NSM) bonding techniques. In the present work, a set of single-lap shear tests were carried out using the EBR and NSM bonding techniques. The evaluation of the performance of the bonding interfaces was done with the help of the digital image correlation (DIC) technique. The tests showed that the measurements gathered with DIC should be used with caution, since there is noise in the distribution of the slips and only the slips greater than one-tenth of a millimetre were fairly well predicted. For this reason, the slips had to be smoothed out to make it easier to determine the strains in the stainless steel and the bond stress transfer between materials, which helps to determine the bond–slip relationship of the interface. Moreover, the DIC technique allowed to identify all the states developed within the interface through the load–slip responses which were also closely predicted with other monitoring devices. Considering the NSM and the EBR samples with the same bonded lengths, it can be stated that the NSM system has the best performance due to their higher strength, being observed the rupture of the stainless steel in the samples with bond lengths of 200 and 300 mm. Associated with this higher strength, the NSM specimens had an effective bond length of 168 mm which is 71.5% of that obtained for the EBR specimens (235 mm). A trapezoidal and a power functions are the proposed shapes to describe the interfacial bond–slip relationships of the NSM and EBR systems, respectively, where the maximum bond stress in the former system is 1.8 times the maximum bond stress of the latter one.

Biscaia, HC, Chastre C, Viegas A, Franco N.  2015.  Numerical modelling of the effects of elevated service temperatures on the debonding process of frp-to-concrete bonded joints. Composites Part B: Engineering. 70:64-79. AbstractWebsite

There are many issues concerning the performance behaviour of FRP-to-concrete interfaces at elevated service temperatures (EST). At EST, i.e. slightly above the glass transition temperature (Tg), some properties associated with the FRP composites, such as the stiffness, strength or the bond characteristics, degrade. This is a crucial issue and there are only a few studies that take into account such effects on FRP-to-concrete interfaces at EST. This paper examines, through a numerical analysis, the performance of FRP-to-concrete bonded joints at EST using a new discrete model based on truss elements and shear springs. The External Bonded Reinforcement (EBR) systems subjected to EST are analyzed. The numerical discrete model was implemented in a MATLAB routine and the bond-slip curves of the interfaces at EST were obtained from a model found in literature. The numerical results revealed that the interface at EST behaves similarly to one with two equal mechanical loads applied at both ends of the FRP plate. The load-slip curves or bond stresses, strains or slippages along the bonded length obtained from several bond-slip curves at different temperatures were obtained. Two different single-lap shear tests were simulated at steady-state (steady temperature followed by load increase) and transient state (steady load followed by temperature increase). Regarding the influence of the temperature on the adhesion between the FRP and concrete, the results showed that an increase in the temperature at an earlier situation, i.e. during a period where temperature had no influence in the concrete deformations, leads to an increase in the effective bond length of the interface affecting the initial strength of the interface.

Biscaia, H, Cardoso J, Chastre C.  2017.  A Finite Element Based Analysis of Double Strap Bonded Joints with CFRP and Aluminium. Key Engineering Materials. 754:237-240. Abstract
n/a
Biscaia, H, Silva MAG, Chastre C.  2016.  Influence of external compressive stresses on the performance of GFRP-to-concrete interfaces subjected to aggressive environments: An experimental analysis. Journal of Composites for Construction . 20(2):04015044. AbstractWebsite

Despite the fact that FRP composites are a reliable structural material with reasonable durability performance, the environment to which the strengthened structure is exposed can make the strengthening system vulnerable. In this study, the effectiveness of Externally Bonded Reinforcement (EBR) systems when external compressive stresses are applied to glass (G) FRP-to-concrete interfaces in several aggressive environments is analysed. The compressive stress imposed on the GFRP-to-concrete interface intends to simulate, for instance, the effect produced by a mechanical anchorage system applied to the EBR system. The design and the region to set those mechanical anchorage systems are not yet well understood and are mostly applied without really knowing how they will behave. This work shows an exhaustive experimental programme based on several double shear tests subjected to salt fog cycles, dry/wet cycles and two distinct temperature cycles: from -10ºC to +30ºC and +7.5ºC to +47.5ºC. The Mohr-Coulomb failure criterion was found to provide a good representation of the performance of the GFRP-to-concrete interface, and changes of cohesion and internal friction angle of those interfaces during the hours of exposure to the aggressive environments are reported.

Biscaia, HC, Borba IS, Silva C, Chastre C.  2016.  A Nonlinear Analytical model to predict The full-range debonding process of FRP-to-parent material interfaces free of any mechanical anchorage devices, 15 March 2016. Composite Structures. 138:52-63. AbstractWebsite

Ever since Fibre Reinforced Polymers (FRP) began to be used in the repair or strengthening of structural elements, the premature debonding of the FRP composite from the substrate has been an important drawback that have been motive of several studies. The importance of knowing and describing the full-range behaviour of FRP-to-parent material interfaces rigorously is therefore urgent. However, at present, there are no analytical solutions that describe the full-range behaviour of such interfaces that help us to understand the full debonding phenomena of FRP-to-parent material interfaces free of any mechanical anchorage devices. Therefore, the aim of this study is to contribute the advances of that knowledge through an analytical solution by means of an exponential bond-slip model that is known to represent the nonlinearities involved in the debonding process of the FRP composite from the substrate. Analytical solutions for the slips, strains in the FRP composite, bond stress distributions along the bonded interface and stresses in the substrate are presented. A full-range load-slip analysis is also discussed.

Yang, Y, Biscaia H, Silva MAG, Chastre C.  2019.  Monotonic and quasi-static cyclic bond response of CFRP-to-steel joints after salt fog exposure, 2019/07/01/. Composites Part B: Engineering. 168:532-549. AbstractWebsite

Deterioration of adhesively bonded CFRP/steel systems in salt fog environment, i.e., deicing salts and ocean environments, has to be taken into account in the design of steel strengthened structures. In the present work, monotonic and quasi-static cyclic loading were applied to CFRP-to-steel double strap joints for two kinds of CFRP laminates after being aged for a period of 5000 h to evaluate the bond behavior. The bonded joints exposed to salt fog had a different failure mode than that observed in the control specimens (0 h of exposure). The severe reduction of the maximum bond stress resulted from damage initiation that occurred in the corrosion region of the steel substrate, associated with final partial rupture on the corroded steel substrate around the edge of the bonded area: it was also correlated with reduced load carrying capacity. Results of pseudo-cyclic tests showed that the relationship between a local damage parameter (D) and normalized local dissipated energy (Wd/Gf) and the normalized slip increment (ΔS/ΔSult) exhibited almost the same trend in the un-aged and aged bonded joints. The normalized slip increment can be seen as a direct indicator for the local and global damage for the un-aged and aged bonded joints. However, monotonic and quasi-static cyclic tests results revealed that the stress concentration due to local corrosion of steel substrate could lead to brittle rupture or accelerated cumulative damage once the aged bonded interface had become weaker. The bonded joints have exhibited also a smaller relative deformation capacity between CFRP and steel.