Coauthored Publications with: Biscaia

Journal Article

Biscaia, HC, Silva MAG, Chastre C.  2015.  Factors influencing the performance of externally bonded reinforcement systems of GFRP-to-concrete interfaces, 2014/06/29. Materials and Structures. 48(9):2961-2981.: Springer Netherlands AbstractWebsite

Fibre reinforced polymer (FRP) composites may prematurely debond from the surface of concrete, i.e. before its elastic resistance is exhausted. This is a very common situation and can be aggravated if additional factors are not taken into account. These factors include the type of surface preparation, the exposure to aggressive environmental action, the tensile concrete strength or fatigue and creep loading to which the structural element may be subject. An experimental programme based on double shear tests was undertaken to analyse the influence of some of these factors on the performance of the interface between composite glass fibres (GFRP) and concrete. The results allowed the determination and comparison of maximum loads transmitted to the GFRP plates and maximum bond stresses obtained considering various surface treatments and aging conditions. Bond–slip curves were also determined. The experimental results are compared with those obtained from a numerical analysis.

Biscaia, HC, Chastre C, Silva MAG.  2017.  Analytical model with uncoupled adhesion laws for the bond failure prediction of curved FRP-concrete joints subjected to temperature. Theoretical and Applied Fracture Mechanics. 89:63-78. Abstract

The strengthening of structures such as columns, beams, arches or slabs with Fibre Reinforced Polymers (FRP) has been the focus of several studies. However, the studies dedicated to the FRP debonding phenomenon of curved bonded joints affected by elevated temperatures are surprisingly limited and no studies on this topic are known, at present, to use nonlinear analytical or numerical approaches. Still, the available studies found in the literature are unanimous in affirming that the debonding phenomenon on such curved interfaces demands the interaction between Fracture Modes I and II. The present work aims to develop an analytical solution capable of simulating the debonding process of curved CFRP-toconcrete interfaces with a constant radius subjected to mechanical and/or thermal loads. Some examples are presented in which the influence of the radius of the interface and the temperature level is analysed. The analytical solution proposed here is based on adhesion laws in which, in the case ofMode II, an exponential bond vs. relative displacement law with temperature dependency is assumed, whereas the Mode I adhesive law is based on a linear with fragile rupture law with the same temperature dependency as Mode II.

Biscaia, HC, Chastre C, Silva MAG.  2013.  Modelling GFRP-to-concrete joints with interface finite elements with rupture based on the Mohr-Coulomb criterion, 10//. Construction and Building Materials. 47:261-273. AbstractWebsite

The strengthening of reinforced concrete structures by means of externally bonded fibre reinforced polymers (FRPs) is now routinely considered and applied in the retrofit or strengthening of structures. FRP composites have received a considerable attention from civil engineers in recent years due to the high strength-weight and stiffness/weight ratios when compared to other materials. However, when FRP composites are bonded to a concrete surface, there is a persistent potential problem that the FRP plates may debond prematurely from the concrete. This is a very important issue for the engineers who have to focus on the computational modelling of this phenomenon. Some studies can be found in literature on computational modelling. However, there is very little information about the best modelling of the interface between FRP composites and concrete and this work is intended to help bridge this gap. The computational analysis presented here is based on three-dimensional software which assumes the smeared crack model, and the interface finite elements (FEs) used have a rupture criteria based on the Mohr-Coulomb criterion with tension cut-off. The definition of these FEs was based on double shear tests that were performed specifically for this purpose and they have shown that the debonding phenomenon can be predicted with some accuracy. In total, 10 double shear models were studied and the results were compared with the 21 experimental tests performed. The double shear tests consisted of applying loads to 2 layered GFRP laminates bonded to a 150 mm concrete cube with a bonded area of 150 × 80 mm (length × width). Double shear models with and without a gap interface were considered in order to emphasize the importance of modelling the GFRP-to-concrete interface with interface finite elements. The effect of the concrete strength on the interface performance was also considered. An externally bonded reinforcement (EBR) concrete T-beam strengthened with 2 GFRP layers is presented to illustrate the application of the method. The wet lay-up technique was used for the external reinforcement of a reinforced concrete T-beam and then tested under a four point bending test until rupture. The results are reported and differences between the numerical and the experimental results are discussed.

Biscaia, H, Chastre C, Cruz D, Franco N.  2016.  Flexural Strengthening of Old Timber Floors with Laminated Carbon Fiber Reinforced Polymers. Journal of Composites for Construction. :04016073. AbstractWebsite

A set of three old suspended timber floors were flexurally-strengthened with Carbon Fiber Reinforced Polymers (CFRP) strips in order to investigate the effectiveness of externally bonding FRP to their soffits. The specimens were from an old building and 740 mm-wide bands were transferred to the laboratory in order to be tested in a 4-point bending test. One specimen was tested with no strengthening system and the results obtained were used as reference values for comparison with the specimens those were externally bonded and reinforced (EBR) with CFRP strips. Two similar EBR systems were studied: (i) keeping both ends of the CFRP strips free of any restriction (traditional technique); and (ii) embedding both ends of the CFRP strips into the timber, thus providing a bonding anchorage of the strips (new technique). The installation of the new strengthening system comprises the opening of holes in the timber and the creation of a transition curve between the holes and the timber surface. This transition curve allows a smooth transition of the CFRP laminate between the hole and the timber surface, thus avoiding stress concentrations in this area. After the opening of the holes, the resin is applied inside the hole and on the beam surface, and then the CFRP laminate is mounted. The load-carrying capacity of the specimens, the rupture modes, the strains and bond stress distributions within the CFRP-to-timber interface are presented. A nonlinear numerical simulation of the specimens based on the mid-span cross-sectional equilibrium is also presented. The results showed that the use of the new strengthening system enhances the performance of the specimens when compared with the traditional strengthening system.

Biscaia, HC, Chastre C, Silva MAG.  2019.  Estimations of the debonding process of aged joints through a new analytical method, 2019/03/01/. Composite Structures. 211:577-595. AbstractWebsite

The estimation of the long-term durability of adhesively bonded interfaces between Fiber Reinforced Polymers (FRP) and concrete substrates is crucial because degradation potentiates FRP premature debonding. One of the main reasons for mistrusting the use of FRP composites is the premature debonding phenomenon, which, associated to degradation, has been preventing their widespread use. In this research work, an analytical model is proposed that introduces ageing to estimate the effects of degradation of Glass (G) FRP externally bonded to concrete. Cycles were used to experimentally accelerate ageing of beam specimens, namely, (i) salt fog cycles; (ii) wet-dry cycles with salted water; (iii) temperature cycles between −10 °C and +30 °C; and (iv) temperature cycles between +7.5 °C and +47.5 °C. Based on the experimental results obtained and a corresponding bond-slip curve, the analytical model predicts the complete debonding process between FRP composites and a substrate. Consequently, the temporal evolution of the degradation of the bonded interfaces can be calculated and compared with the initial situation prior to exposure. The effects of the environmental conditions are reported and compared.

Biscaia, HC, Micaelo R, Teixeira J, Chastre C.  2014.  Delamination process analysis of FRP-to-parent material bonded joints with and without anchorage systems using the Distinct Element Method. Composite Structures. 116(September–October):104–119. AbstractWebsite

This study looks at the analysis of the interface between Fiber Reinforced Polymer (FRP)-to-parent material bonded interfaces. The performance of FRP-to-parent material bonded joints for the Externally Bonded Reinforcement (EBR) technique is numerically modelled with the PFC2D software which is based on the Distinct Element Method (DEM). It is believed that this represents the first time the DEM has been used to simulate the delamination process of FRP-to-parent material bonded joints. In order to validate the analysis performed with the DEM, a Pull-out test with no slip constrains was modelled and different linear bond-slip laws were assumed. The numerical results revealed that the DEM is capable of estimating with good accuracy the exact solutions of bond stresses, strains or slippages along the bonded length for linear bond-slip laws. The bi-linear law available in PFC2D was then compared to the numerical results obtained from other another code developed by the author. The delamination process of Pull-out tests with slip constrain at one of the free ends of the FRP plate is also described and analyzed. The results obtained from the DEM revealed that the delamination process ends with stiffness equal to the axial stiffness of the FRP plate. This evidence highlights the need to design mechanical anchor devices capable of preventing premature debonding which is known to occur on EBR systems.

Biscaia, HC, Chastre C, Cruz D, Viegas A.  2017.  Prediction of the interfacial performance of CFRP laminates and old timber bonded joints with different strengthening techniques, 1/1/. Composites Part B: Engineering. 108:1-17. AbstractWebsite

Fiber Reinforced Polymers (FRP) is a recent technique to strengthen timber structures and the studies available discussing the debonding between these materials are limited. Therefore, the bond assessment between FRP composites and timber substrates is a topic that needs clarification. The present work analyses the debonding process between Carbon (C) FRP laminates and timber with rupture modes consistent with Mode II interfacial fracture, i.e. with the sliding mode where the bond stresses act parallel to the plane of the bonding surface. Several single-lap shear tests were performed and the experiments showed a nonlinear local behaviour of the CFRP-to-timber interface. An interfacial bond-slip model and its calibration procedure were also presented. Furthermore, the calibrated nonlinear bond-slip model was implemented in a numerical approach where the FRP composite and the adhesive are simulated by linear and nonlinear springs and the substrate is assumed rigid. The following influences on the debonding process of the CFRP-to-timber interface were also analysed: (i) the bonding technique (Externally Bonded Reinforcement - EBR; and Near Surface Mounted - NSM); and (ii) the use of an additional device to mechanically anchor the CFRP laminate. Besides the determination of the effective bond length for each bonding technique, a new concept defining the length beyond which the force at the anchorage device does not decrease with the bonded length and a proposal to estimate its value for any bonded length was also presented and discussed. The experimental tests have shown that the NSM technique has a better performance compared to the EBR technique, independently of the installation of mechanical anchorage devices. In the case of the EBR technique, the strains in the CFRP laminate increased at its vicinities due to the clamping force applied to the anchors, which affected the final strength of the interface.

Biscaia, HC, Chastre C.  2018.  Design method and verification of steel plate anchorages for FRP-to-concrete bonded interfaces, 5/15/. Composite Structures. 192:52-66. AbstractWebsite

Concrete structures Externally Bonded Reinforced (EBR) with Fibre Reinforced Polymers (FRP) have been studied and used since the end of the last century. However, several issues need to be better studied in order to improve performance. The influence of size of anchorage plates used on Reinforced Concrete (RC) structures strengthened with EBR FRP composites, the external compressive stress to be applied on the anchorage plate and the numerical simulation of this region are some of the topics that need to be more carefully studied in order to clarify the performance of the FRP-to-concrete interface within the anchorage plate region. This study proposes a design methodology to estimate the amount of external compressive stress necessary to be applied on the anchorage plate of EBR systems with FRP composites, in order to avoid premature debonding. The external compressive stress imposed on the FRP composite is intended to simulate the effect produced by a mechanical anchorage system tightened to the EBR system. The results from the design proposal, when compared with the numerical ones, were efficient enough on the prediction of the bond strength improvement of FRP-to-concrete interfaces.

Yang, Y, Biscaia H, Chastre C, Silva MAG.  2017.  Bond characteristics of CFRP-to-steel joints. Journal of Constructional Steel Research. 138:401-419. Abstract

Carbon Fiber Reinforced Polymer (CFRP) composites have a large potential for strengthening and retrofitting steel parts but due to their premature debonding from steel, further data and research are still required for wider application in such situations. In the present paper, the bond characteristics of CFRP-to-steel joints in pull-pull loaded conditions were studied. Monotonic loading of the double strap joints with different bond lengths was applied and the failure modes and interfacial bond-slip curves were obtained. A tri-linear bondslip model is proposed and it was derived from the experimental data. A closed-form solution approach is also proposed based on the tri-linear bond-slip model. The strength of the CFRP-to-steel interface, the distribution of the relative displacements between bonded materials, the strains developed in the CFRP laminate and the bond stresses along the interface are reported and the closed-form solution is compared with the experimental results. Two cases are selected for presentation: (i) one with the bond length greater than the effective bond length; and, inversely, (ii) one with bond length which is shorter than the effective bond length. The results predicted by the closed-form solutions are shown to be accurate enough when compared to the experiments.

Biscaia, HC, Chastre C, Silva MAG.  2013.  Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfaces. Composites Part B: Engineering. 50:210-223. AbstractWebsite

The paper analyses numerical solutions for the process leading to debonding failure of fiber reinforced polymers (FRP)-to-concrete interfaces in shear tests with the FRP plate subjected to a tensile load at one end. Any realistic local nonlinear bond-slip law can be used in the numerical analysis proposed in the present study. However, only a Popovics’ type expression is employed in the numerical process due to its use in different studies found in the literature. Effective bond length (Leff) is discussed and an expression depending on the Popovics’ constant (nP) is proposed to calculate it. Assuming a fracture in pure Mode II, the debonding process is analyzed in detail and distributions of bond stresses and strains in the FRP plate along the interface are presented. The load-displacement behaviour is also presented and the influence of the local bond-slip law on the debonding process is discussed.

Biscaia, H, Chastre C, Borba I, Silva C, Cruz D.  2016.  Experimental evaluation of bonding between CFRP laminates and different structural materials. Journal of Composites for Construction. 20:04015070., Number 3 AbstractWebsite

This study presents an analysis of Carbon Fiber Reinforced Polymers (CFRP)-to-parent material interfaces based on 40 single-lap shear tests intended to highlight the strength of the interfaces under fracture mode II. Three different substrates are analyzed: timber;concrete and steel, using the same CFRP laminates and adhesive agent. The Externally Bonded Reinforcement (EBR) technique was used throughout the study. The results show that the CFRP-to-timber interfaces had the highest strength but also showed that these interfaces need a longer bonded length in order to reach maximum strength, i.e., CFRP-to-timber interfaces had the longest effective bond length. The local non-linear bond-slip curve of CFRP-to-concrete can be approximated to exponential curves, whereas the CFRP-to-timber or steel interfaces showed tri-linear and bi-linear bond-slip relations, respectively. Also, the CFRP-to-timber interfaces revealed the highest fracture energy.

Monteiro, A, Chastre C, Biscaia H, Franco N.  2017.  Reforço de vigas em betão armado com armaduras exteriores de FRP, Jan. 2017. Revista Internacional TechITT. 15:48-60., Number 40 AbstractWebsite

A utilização de Polímeros Reforçados com Fibras (FRP) no reforço de estruturas de Betão Armado (BA) tem tido cada vez mais aceitação devido à sua elevada resistência e rigidez, baixo peso específico e excelente resistência aos efeitos dos agentes ambientais. No entanto, actualmente, é comum utilizarem-se técnicas de reforço que dificilmente permitem tirar partido da resistência total destes materiais. Com o objectivo de explorar a capacidade total de Polímeros Reforçados com Fibras de Carbono (CFRP), foram estudadas e desenvolvidas duas novas técnicas de reforço de vigas à flexão designadas por Continuous Reinforcement Embedded at Ends (CREatE) e Horizontal Near Surface Mounted Reinforcement (HNSMR). Posteriormente realizou-se um estudo comparativo entre o desempenho destes sistemas de reforço e o de duas outras técnicas já estudadas e usuais, nomeadamente os sistemas Externally Bonded Reinforcement (EBR) e Near Surface Mounted Reinforcement (NSMR). A técnica CREatE provou ser a mais eficaz de todas as alternativas testadas mobilizando a totalidade do compósito de CFRP e dotando as vigas de BA com uma maior capacidade resistente e com uma ductilidade mais elevada.Como complemento deste trabalho experimental, desenvolveu-se também um programa de cálculo em MATLAB, capaz de simular o problema em estudo através de um modelo numérico de análise não linear através do equilíbrio de secções. A representatividade dos dados obtidos foi verificada através de uma análise comparativa entre os valores numéricos e os obtidos experimentalmente.The use of Fiber Reinforced Polymers (FRP) in order to strengthen Reinforced Concrete (RC) structures has been increasingly accepted due to their strength and stiffness, low weight and excellent resistance to the effects of environmental aggressive agents. However, the bonding techniques available and described in the literature can not allow the full use of the mechanical properties of these materials and premature failures are often observed and described by several researchers. In order to explore the full capacity of CFRP composites, two new bonding strengthening techniques of RC beams when subjected to 4-point bending tests were studied and developed. For these new techniques, the designation of Continuous Reinforcement Embedded at Ends (CREatE) and Horizontal Near Surface Mounted Reinforcement (HNSMR) has been assigned. Posteriorly, a comparative study has been carried out between those strengthening systems performance and two traditional techniques, namely, the Externally Bonded Reinforcement (EBR) and Near Surface Mounted Reinforcement (NSMR). The CREatE technique has proved to be the most effective of all alternatives tested, with the full utilization of the CFRP composite and the highest strength, combined with the highest ductility. A code using MATLAB software was developed as a complement of this experimental work, which is able to simulate the problem under study through a nonlinear numerical model based on the equilibrium of sections. The representativeness of the numerical data has been verified afterwards through a comparative analysis between those and the experimental results.

Biscaia, HC, Silva MAG, Chastre C.  2014.  An experimental study of GFRP-to-concrete interfaces submitted to humidity cycles, 4//. Composite Structures. 110(April):354-368. AbstractWebsite

Systems externally reinforced by bonded fibre reinforced polymers (FRP) are widely used in the retrofitting and strengthening of reinforced concrete (RC) structures. A drawback of the usage of this technique lies on the uncertainty of the long term behaviour of those reinforcements. Researchers have paid heed to this aspect and a number of tests and alternative techniques have recently been described. An experimental programme developed to supplement work of the authors recently published and which focused on specimens not submitted to aggressive environments is described. The specimens used have the same geometry as in the previous paper, but they were exposed to salt fog cycles and dry/wet cycles with salt water for periods of 3000 h, 5000 h and 10,000 h. The interface of the glass fiber polymeric composite (GFRP)-to-concrete was characterized after the systems underwent such aggressive conditions. The GFRP wrap comprised of two layers and wet lay-up technique was used on its preparation and application. The cohesion and friction angle for GFRP-to-concrete interfaces were measured tat selected stages of ageing process and envelope failure laws were obtained based on the Mohr–Coulomb failure criterion. Changes of 27% in cohesion and 8% in the friction angle were found due to the attack of the interface and consequences of the changes are examined.

Biscaia, H, Chastre C, Silva C, Franco N.  2018.  Mechanical Response of Anchored FRP bonded joints: A Nonlinear Analytical Approach. Mechanics of Advanced Materials and Structures. Abstract

The paper presents a nonlinear analytical solution for the prediction of the full-range debonding response of mechanically-anchored FRP composites from the substrate. The nonlinear analytical approach predicts, for any monotonic loading history or bonded length the relative displacements (or slips) between materials, the strains in the FRP composite, the bond stresses within the interface and the stresses developed in the substrate. The load-slip responses FRP-to-substrate interfaces with a short and a long bonded lengths are motive of analysis and discussion. The solutions obtained from the proposed approach are also compared with other experimental results found in the literature.

Biscaia, HC, Chastre C, Silva C, Franco N.  2018.  Mechanical response of anchored FRP bonded joints: A nonlinear analytical approach, 2018/02/17. Mechanics of Advanced Materials and Structures. 25:238-252., Number 3: Taylor & Francis AbstractWebsite

This article presents a nonlinear analytical solution for the prediction of the full-range debonding response of mechanically anchored, fiber-reinforced polymer (FRP) composites from the substrate. The nonlinear analytical approach predicts, for any monotonic loading history or bonded length, the relative displacements (or slips) between materials, the strains in the FRP composite, the bond stresses within the interface, and the stresses developed in the substrate. The load-slip responses of FRP-to-substrate interfaces with short and long bonded lengths are motives of analysis and discussion. The solutions obtained from the proposed approach are also compared with other experimental results found in the literature.

Biscaia, HC, Chastre C, Silva MAG.  2012.  Double shear tests to evaluate the bond strength between GFRP/concrete elements. Composite Structures. 94:681-694., Number 2 AbstractWebsite

Externally bonded reinforced systems have been widely used in civil engineering. However, the problems associated with bond between structural elements are not yet fully solved. As a consequence, many researchers have been proposing tests and techniques to standardize procedures and reach better agreement for design purposes. In the present paper, an experimental program is described that was developed to characterize the glass FRP/concrete interface by double shear tests made on 15 cm side cubes with GFRP bonded on two opposite faces. The GFRP wrap had two layers applied by the wet lay-up technique and three classes of concrete were considered. With the support of the experimental program, cohesion and friction angle for GFRP–concrete interfaces were found leading to different envelope failure laws, based on the Mohr–Coulomb failure criterion for each concrete class, capable of predicting GFRP debonding. Results are discussed.

Biscaia, HC, Chastre C, Viegas A.  2015.  A new discrete method to model unidirectional FRP-to-parent material bonded joints subjected to mechanical loads, 3//. Composite Structures. 121:280-295. AbstractWebsite

Nowadays fiber reinforced polymer (FRP) composites play an important role in the strengthening of structures. Different methods can be used to apply these materials: the externally bonded reinforcement (EBR), and the near surface mounted (NSM) using strips and NSM rods. There are only a few studies comparing these methods or presenting an efficient model to simulate these strengthening techniques. This study looks mainly at the analysis of the interface between FRP-to-parent material bonded joints. The paper examines, through a new discrete model based on axial and shear springs, the performance of FRP-to-parent material bonded joints for EBR or NSM techniques using strips or composite rods. In order to implement the model a routine in MATLAB was developed and several bond–slip curves were assumed. The results revealed that load–slip curves or bond stresses, strains or slippages along the bonded length obtained from several bond–slip curves are similar to the analytical and other numerical solutions found in literature. In what concerns the adhesion between two different materials, and assuming the same bond characteristics for the three fiber strengthening techniques, the NSM system using FRP strips had the highest maximum load transmitted to the FRP strip combined with the lowest effective bond length. The results obtained from the proposed model were also very accurate with that obtained from an analytical solution found in literature that simulates the debonding phenomenon of FRP-to-concrete interfaces between to adjacent cracks.

Biscaia, H, Chastre C.  2018.  A simple analytical approach for creep analysis of EB-FRP systems. Key Engineering Materials . Abstract

Based on a few experimental results available in the literature, this work presents a simple analytical approach that allows the study of the long-term behaviour of CFRP-to-concrete interfaces under an initial sustaining load. Only the elastic regime is studied, which means that the interfacial maximum bond stress and maximum slip are never exceeded. Therefore, the maximum initial load to be sustained by the joints is limited by its corresponding elastic value. The analytical results provided by the proposed model are compared with some experimental results found in the literature. The results showed strain redistribution throughout the bonded length over the time.