Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Godinho Almeida Borges Martins P. a A. a. "
Transparent, conductive ZnO:Al thin film deposited on polymer substrates by RF magnetron sputtering."
Surface and Coatings Technology. 151-152 (2002): 247-251.
AbstractIn this paper, we present the optical, electrical, structural and mechanical properties exhibited by aluminum-doped zinc oxide (ZnO:Al) thin films produced by RF magnetron sputtering on polymeric substrates (polyethylene terephthalate, PET; Mylar type D from Dupont®) with a standard thickness of 100 μm. The influence of the uniaxial tensile strain on the electrical resistance of these films was evaluated in situ for the first time during tensile elongation. In addition, the role of the thickness on the mechanical behavior of the films was also evaluated. The preliminary results reveal that the increase in electrical resistance is related to the number of cracks, as well as the crack width, which also depends on the film thickness. © 2002 Elsevier Science B.V. All rights reserved.
Malik, A., Martins R. "
UV enhanced and solar blind photodetectors based on large-band-gap materials."
Materials Science Forum. 258-263 (1997): 1425-1430.
AbstractHigh quantum efficiency, UV-enhanced monocrystalline zinc sulphide optical sensors for precise radiometric and spectroscopic measurements have been developed by spray deposition of heavy fluorinedoped tin oxide thin films with carrier concentration near 1021 cm-3 onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced silicon photodetectors as well as to new detectors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that was nearly 100% from 250 to 320 nm, and the typical sensitivity at 290 nm is 0.15 A/W. The sensors were insensitive to solar radiation in earth's conditions and can be used as solar blind photodetectors for precision UV-measurements under direct solar illumination, both terrestrial and space applications.