Publications

Export 43 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Cramer, T.a, Sacchetti Lobato Barquinha Fischer Benwadih Bablet Fortunato Martins Fraboni A. a M. T. "Radiation-Tolerant Flexible Large-Area Electronics Based on Oxide Semiconductors." Advanced Electronic Materials. 2 (2016). AbstractWebsite

Large-area electronics for applications in environments with radioactive contamination or medical X-ray detectors require materials and devices resistant to continuous ionizing radiation exposure. Here the superior X-ray radiation hardness of oxide thin film transistors (TFTs) based on gallium-indium-zinc oxide is demonstrated, when compared to organic ones. In the experiments both TFTs are subjected to X-ray radiation and their performances are monitored as a function of total ionizing dose. Flexible oxide TFTs maintain a constant mobility of 10 cm2 V−1 s−1 even after exposure to doses of 410 krad(SiO2), whereas organic TFTs lose 55% of their transport performance. The exceptional resistance of oxide semiconductors ionization damage is attributed to their intrinsic properties such as independence of transport on long-range order and large heat of formation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

2013
Martins, R.F.P.a, Ahnood Correia Pereira Barros Barquinha Costa Ferreira Nathan Fortunato A. b N. a. "Recyclable, flexible, low-power oxide electronics." Advanced Functional Materials. 23 (2013): 2153-2161. AbstractWebsite

The ability to process and dimensionally scale field-effect transistors with and on paper and to integrate them as a core component for low-power-consumption analog and digital circuits is demonstrated. Low-temperature-processed p- and n-channel integrated oxide thin-film transistors in the complementary metal oxide semiconductor (CMOS) inverter architecture are seamlessly layered on mechanically flexible, low-cost, recyclable paper substrates. The possibility of building these circuits using low-temperature processes opens the door to new applications ranging from smart labels and sensors on clothing and packaging to electronic displays printed on paper pages for use in newspapers, magazines, books, signs, and advertising billboards. Because the CMOS circuits reported constitute fundamental building blocks for analog and digital electronics, this development creates the potential to have flexible form factor computers seamlessly layered onto paper. The holistic approach of merging low-power circuitry with a recyclable substrate is an important step towards greener electronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Araújo, A.a, Barros Mateus Gaspar Neves Vicente Filonovich Barquinha Fortunato Ferraria Botelho Do Rego Bicho Águas Martins R. a T. a. "Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells." Science and Technology of Advanced Materials. 14 (2013). AbstractWebsite

We report the effect of a disperse carbon interlayer between the n-a-Si:H layer and an aluminium zinc oxide (AZO) back contact on the performance of amorphous silicon solar cells. Carbon was incorporated to the AZO film as revealed by x-ray photoelectron spectroscopy and energy-dispersive x-ray analysis. Solar cells fabricated on glass substrates using AZO in the back contact performed better when a disperse carbon interlayer was present in their structure. They exhibited an initial efficiency of 11%, open-circuit voltage Voc = 1.6 V, short-circuit current JSC = 11 mA cm -2 and a filling factor of 63%, that is, a 10% increase in the J SC and 20% increase in the efficiency compared to a standard solar cell. © 2013 National Institute for Materials Science.

2011
Branquinho, R.a b, Veigas Pinto Martins Fortunato Baptista B. c J. V. "Real-time monitoring of PCR amplification of proto-oncogene c-MYC using a Ta2O5 electrolyte-insulator-semiconductor sensor." Biosensors and Bioelectronics. 28 (2011): 44-49. AbstractWebsite

We present a new approach for real-time monitoring of PCR amplification of a specific sequence from the human c-MYC proto-oncogene using a Ta 2O 5 electrolyte-insulator-semiconductor (EIS) sensor. The response of the fabricated EIS sensor to cycle DNA amplification was evaluated and compared to standard SYBR-green fluorescence incorporation, showing it was possible to detect DNA concentration variations with 30mV/μM sensitivity. The sensor's response was then optimized to follow in real-time the PCR amplification of c-MYC sequence from a genomic DNA sample attaining an amplification profile comparable to that of a standard real-time PCR. Owing to the small size, ease of fabrication and low-cost, the developed Ta 2O 5 sensor may be incorporated onto a microfluidic device and then used for real-time PCR. Our approach may circumvent the practical and economical obstacles posed by current platforms that require an external fluorescence detector difficult to miniaturize and incorporate into a lab-on-chip system. © 2011 Elsevier B.V.

c Chitanu, E.a, Barros Ionita Martins Fortunato R. b G. d. "RF magnetron sputtering deposition of AZO thin films." Metalurgia International. 16 (2011): 32-34. AbstractWebsite

Doped zinc oxide with aluminium are attractive alternative material as transparent conducting electrode because they are nontoxic and inexpensive compared with indium tin oxide (ITO) for diffrent applications: solar cells, tft. Transparent aluminumdoped zinc oxide (AZO) thin films were deposited on glass substrates by RF magnetron sputtering at room temperature and 100W from ceramic target ZnO-Al2O3 (98:2 weight percent). The structural, electrical and optical properties of these films were characterized as a function of deposition pressure. AZO films with low resistivity 2.02×10-3 Ωcm and high transmittance (over 80% in vizible range) were thus prepared with a deposition pressure of 3 mTorr.

c Olziersky, A.a, Barquinha Vilà Magana Fortunato Morante Martins P. b A. a. "Role of Ga 2O 3-In 2O 3-ZnO channel composition on the electrical performance of thin-film transistors." Materials Chemistry and Physics. 131 (2011): 512-518. AbstractWebsite

In this work we present a study aiming to determine the role of Ga2O3-In2O3-ZnO (GIZO) channel layer composition on the electrical performance and stability exhibited by thin-film transistors (TFTs). The GIZO films were obtained by magnetron sputtering using ceramic targets of different compositions (Ga:In:Zn = 2:2:1, 2:2:2, 2:4:1 and 2:4:2 at.). Structural analysis corroborates the fully amorphous character of the GIZO deposited layers. For the target compositional range used we observe a Zn deficiency on the produced films, which affects the In/Ga atomic concentration ratios. Resistivity and mobility are found to show a general trend against the measured In/Ga ratio that reveals the role played by In and Ga cations on the transport mechanisms. Targets with increased In concentrations (2:4:1 and 2:4:2) allow to obtain the best TFT performances with field effect mobilities reaching values of 53.0 and 51.7cm2 V-1 s-1, respectively. In addition, the In-richer GIZO compositions result in considerably more stable TFTs, especially under positive gate bias stress conditions. Finally, it is verified that by using a target with a slightly lower In atomic composition (2:4:2 in comparison to 2:4:1), good stability and mobility can be achieved with potentially lower material costs.© 2011 Elsevier B.V. All rights reserved.

Gonçalves, G.a, Grasso Barquinha Pereira Elamurugu Brignone Martins Lambertini Fortunato V. b P. a. "Role of room temperature sputtered high conductive and high transparent indium zinc oxide film contacts on the performance of orange, green, and blue organic light emitting diodes." Plasma Processes and Polymers. 8 (2011): 340-345. AbstractWebsite

The core of this paper concerns the use of an amorphous transparent conductive oxide (a-TCO), whose performance is on par with the classical indium tin oxide (ITO) films as a transparent contact in organic light emitting diodes (OLEDs). The main advantage of indium zinc oxide (IZO) films relies on their amorphous structure and high mobility that turns them likely to be used with high conductivity and high transmittance even at the infrared region. The mobility of IZO films (47.8 cm2 · V-1 · s-1) surpasses the one exhibited by ITO films (26.4 cm2 · V-1 · s-1), which along with its smoother surface and better current distribution plays an important role on OLEDs performance. Besides their similar turn-on voltage, the devices using IZO anodes exhibit higher power efficiency than the ITO ones, which is 66, 18, and 62% for orange, green, and blue OLEDs, respectively. These results suggest that IZO can potentially be applied as an anode in full color displays based on OLEDs. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

2010
b Águas, H.a b, Filonovich Bernacka-Wojcik Fortunato Martins S. A. a I. "Role of trimethylboron to silane ratio on the properties of p-type nanocrystalline silicon thin film deposited by radio frequency plasma enhanced chemical vapour deposition." Journal of Nanoscience and Nanotechnology. 10 (2010): 2547-2551. AbstractWebsite

Trimethylboron (TMB) has been receiving attention as a valid alternative to diborane and methane mixtures for the deposition of p-type silicon films for applications in optoelectronic devices such as solar cells. In this paper we report on p-type hydrogenated nanocrystalline silicon carbide (nc-Si:C:H) films produced by standard 13.56 MHz plasma enhanced chemical vapour deposition technique, using TMB as gas source, under high hydrogen dilution (98%) and using high deposition pressures (3 Torr). The films obtained were characterized by spectroscopic ellipsometry (SE), Raman spectroscopy (RS), and electrical measurements to determine their optical, structural and electrical properties. We achieved conductivities as high as 8.3 (Ω cm) -1, one of the highest values of conductivity published to date using TMB with standard rf-PECVD. Spectroscopic ellipsometry modeling revealed that the films growth mechanism proceeds through a sub-surface layer mechanism that leads to the formation of nanocrystalline silicon. Copyright © 2010 American Scientific Publishers All rights reserved.

2009
Elangovan, E., Gonçalves Martins Fortunato G. R. E. "RF sputtered wide work function indium molybdenum oxide thin films for solar cell applications." Solar Energy. 83 (2009): 726-731. AbstractWebsite

Indium molybdenum oxide (IMO) thin films were deposited by RF magnetron sputtering on glass substrates at room temperature. The deposition and argon partial pressures were maintained at 6.0 × 10-1 Pa and 3.0 × 10-1 Pa, respectively. The oxygen partial pressure (OPP) was varied in the range 1.0-6.0 × 10-3 Pa. The films were sputtered at 40 W for 30 min using the target consisted In2O3 (98 wt%): Mo (2 wt%). The films are polycrystalline with a slight preferential orientation along (2 2 2) plane. The crystallinity is increased with the increasing OPP. The negative sign of Hall coefficient confirmed the n-type conductivity. A maximum mobility ∼19 cm2 V-1 s-1 is obtained for the films deposited with OPP of 3.6 × 10-3 Pa. The average visible transmittance calculated in the wavelength ranging 500-800 nm is ranging between 2% and 77%. The optical band gap calculated from the absorption data is varied between 3.69 and 3.91 eV. A striking feature is that the work function of the films is wide ranging 4.61-4.93 eV. A possibility of using the produced IMO films as transparent conducting oxide in photovoltaic applications such as organic solar cells is discussed in this article. © 2008 Elsevier Ltd. All rights reserved.

Pei, Z.L.a, Pereira Goņalves Barquinha Franco Alves Rego Martins Fortunato L. a G. a. "Room-temperature cosputtered HfO2 - Al2 O3 multicomponent gate dielectrics." Electrochemical and Solid-State Letters. 12 (2009): G65-G68. AbstractWebsite

Hafnium oxide-aluminum oxide (HfAlO) dielectric films were cosputtered using HfO2 and Al2 O3 targets, and their properties are studied in comparison with pure HfO2 films. The X-ray diffraction studies confirmed that the HfO2 films are nanocrystalline with a monoclinic phase. The as-deposited HfAlO films with a chemical composition of (HfO2) 0.86 (Al2 O3) 0.14 are amorphous even after annealing at 500°C. Further, the cosputtered films show a slight reduction in leakage current. The leakage current density may be significantly reduced below 3× 10-10 A cm-2 at an electric field of 0.25 MV/cm when applying the proper radio-frequency bias to the substrate. © 2009 The Electrochemical Society.

2008
Barquinha, P.a, Vila Gonçalves Pereira Martins Morante Fortunate A. b G. a. "The role of source and drain material in the performance of GIZO based thin-film transistors." Physica Status Solidi (A) Applications and Materials Science. 205 (2008): 1905-1909. AbstractWebsite

Indium tin oxide (ITO) has been used as the prefered electrode material for the emerging area of transparent electronics, namely for thin-film transistors (TFTs) based on oxide semiconductors. This work pretends to investigate different materials to replace ITO in inverted-staggered TFTs based on gallium-indium-zinc oxide (GIZO), one of the most promissing oxide semiconductors for TFTs. The analyzed electrode materials are indium-zinc oxide (IZO), Ti, Mo and Ti/Au. Devices are analyzed with special focus on the contact resistance fundamentals, including the extraction of source/ drain series resistances and TFTs intrinsic parameters, such as intrinsic mobility (p\) and intrinsic threshold voltage (V Ti). The obtained contact resistance values are between 10 kΩ and 20 kΩ, and the best devices have field effect mobility ((μ FE) close to 25 cm 2/V s and on/off ratio close to 10 8. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

2007
Martins, R., Barquinha Pereira Ferreira Fortunato P. L. I. "Role of order and disorder in covalent semiconductors and ionic oxides used to produce thin film transistors." Applied Physics A: Materials Science and Processing. 89 (2007): 37-42. AbstractWebsite

This paper aims to discuss the effect of order and disorder on the electrical performances of covalent silicon semiconductors and ZnO based ionic oxide semiconductors used as active channel layers in thin film transistors. The effect of disorder on covalent semiconductors directly affects their electrical transport properties due to the asymmetric behaviour of sp states, while in ionic oxide semiconductors it is found that this effect is small due to the fact that angular disorder has no effect on the spherical symmetry of s states. To this we must add that the mobility of carriers in both systems is quite different, being also affected by electron-phonon interactions (weak in silicon and strong in ionic oxides leading to formation of polarons). Besides, the impurity doping effect and the presence of vacancies in disordered silicon and in ionic oxides behave differently, which will influence the thin film properties and so, the performances of the devices produced. © 2007 Springer-Verlag.

Martins, R.b, Barquinha Ferreira Pereira Goņalves Fortunato P. a I. a. "Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors." Journal of Applied Physics. 101 (2007). AbstractWebsite

The role of order and disorder on the electronic performances of n -type ionic oxides such as zinc oxide, gallium zinc oxide, and indium zinc oxide used as active (channel) or passive (drain/source) layers in thin film transistors (TFTs) processed at room temperature are discussed, taking as reference the known behavior observed in conventional covalent semiconductors such as silicon. The work performed shows that while in the oxide semiconductors the Fermi level can be pinned up within the conduction band, independent of the state of order, the same does not happen with silicon. Besides, in the oxide semiconductors the carrier mobility is not bandtail limited and so disorder does not affect so strongly the mobility as it happens in covalent semiconductors. The electrical properties of the oxide films (resistivity, carrier concentration, and mobility) are highly dependent on the oxygen vacancies (source of free carriers), which can be controlled by changing the oxygen partial pressure during the deposition process and/or by adding other metal ions to the matrix. In this case, we make the oxide matrix less sensitive to the presence of oxygen, widening the range of oxygen partial pressures that can be used and thus improving the process control of the film resistivity. The results obtained in fully transparent TFT using polycrystalline ZnO or amorphous indium zinc oxide (IZO) as channel layers and highly conductive poly/nanocrystalline ZGO films or amorphous IZO as drain/source layers show that both devices work in the enhancement mode, but the TFT with the highest electronic saturation mobility and on/off ratio 49.9 cm2 V s and 4.3× 108, respectively, are the ones in which the active and passive layers are amorphous. The ZnO TFT whose channel is based on polycrystalline ZnO, the mobility and on/off ratio are, respectively, 26 cm2 V s and 3× 106. This behavior is attributed to the fact that the electronic transport is governed by the s -like metal cation conduction bands, not significantly affected by any type of angular disorder promoted by the 2p O states related to the valence band, or small amounts of incorporated metal impurities that lead to a better control of vacancies and of the TFT off current. © 2007 American Institute of Physics.

Aguas, H., Pereira Costa Raniero Fortunato Martins L. D. L. "Role of the oxide layer on the performances of a-Si:H schottky structures applied to PDS fabrication." Materials Research Society Symposium Proceedings. Vol. 910. 2007. 415-420. Abstract

In this work we present results of studies performed on Schottky and metal-insulator-semiconductor (MIS) position sensitive detectors (PSD) structures: substrate (glass)/ Cr (300 nm) / a-Si:H [n] (37 nm) / a-Si:H [i] (600 nm) / SiO2 (1.5 nm - for the MIS) / Au (7 nm). The effect of the interfacial oxide layer between Au and a-Si:H, for the MIS structures, was studied and compared with the Schottky, in order to determine how beneficial it could be for device performances and time degradation. For doing so, the Au thickness of 70Å was deposited by thermal evaporation on an oxide free (Schottky) and oxidized (≈20Å) (MIS) a-Si:H surfaces. These structures were characterized by SIMS, RBS, SEM and AFM in order to correlate the obtained diffusion profile of Au at the interface and the topography with the presence of the oxide at the interface. The results show that the Au inter-diffuses very easily in the oxide free a-Si:H surface, even at room temperature, degrading the devices performance. On the other hand, the MIS structures, with their interfacial oxide present no structural changes after annealing and the PSD produced are stable. We believe that this effect is associated with the barrier effect of the interfacial oxide that prevents the Au diffusion. The optimized 1D MIS sensors are stable and exhibit a linearity error as low as 0.8 % and sensitivities of 33 mV/cm for a 5 mW spot beam intensity at a wavelength of 532 nm, while the Schottky sensors showed a time degradation of their characteristics. © 2006 Materials Research Society.

2006
Raniero, L., Ferreira Pimentel Gonçalves Canhola Fortunato Martins I. A. A. "Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings." Thin Solid Films. 511-512 (2006): 295-298. AbstractWebsite

In this paper we study the electro-optical behaviour and the structure of different TCOs, namely the ZGO, ITO and IZO films before and after being submitted to different hydrogen plasma power densities, for times up to 60 s, aiming their use in a/nc-Si:H solar cells. The results achieved show that ZGO films do not reduce for all plasma conditions used and so, the solar cells produced evidence high current density, about 17% larger that the one recorded in the other TCOs. Besides that, by combining the electrical and optical characteristics of the films through a figure of merit, the data reveal that for the ITO and IZO films even when exposed to very low hydrogen power plasma, the figure of merit is reduced up to 50%. © 2005 Elsevier B.V. All rights reserved.

Raniero, L.a, Gonçalves Pimentel Zhang Ferreira Vilarinho Fortunato Martins A. a A. a. "Role of hydrogen plasma on the electrical and optical properties of indium zinc transparent conductive oxide." Materials Science Forum. 514-516 (2006): 63-67. AbstractWebsite

In this work we studied the influence of the power density of hydrogen plasma on electrical and optical properties (Hall mobility, free carrier concentration, sheet resistance, optical transmittance and a.c. impedance) of indium zinc oxide films, aiming to determine their chemical stability. This is an important factor for the optimization of amorphous/nanocrystalline p-i-n hydrogenated silicon (a/nc-Si:H) solar cells, since they should remain chemically highly stable during the p layer deposition. To perform this work the transparent conductive oxide was exposed to hydrogen plasma at substrate temperature of 473 K, 87 Pa of pressure and 20 seem of hydrogen flow. The results achieved show that IZO films were reduced for all plasma conditions used, which leads mainly to a decrease on films transmittance. For the lowest power density used in the first minute of plasma exposition the transmittance of the IZO films decreases about 29%.

Pimentel, A.C., Gonçalves Marques Martins Fortunato A. A. R. "Role of the thickness on the electrical and optical performances of undoped polycrystalline zinc oxide films used as UV detectors." Journal of Non-Crystalline Solids. 352 (2006): 1448-1452. AbstractWebsite

In this paper we present the effect of thickness on the electrical and optical properties of intrinsic/nondoped zinc oxide thin films deposited at room temperature by radio frequency magnetron sputtering, able to be used as a semiconductor material on electronic devices, like for example ozone gas sensors and ultraviolet detectors. These films are polycrystalline with a c-axis preferential orientation parallel to the substrate. The films present a resistivity that varies from 5.0 × 104 Ω cm to 1.0 × 109 Ω cm with an optical visible transmittance of 85%. The sensor response exceeds more than five orders of magnitude when exposed to UV light recovering to the initial state in the presence of ozone. © 2006 Elsevier B.V. All rights reserved.

2005
Fortunato, E., Barquinha Pimentel Gonçalves Marques Pereira Martins P. A. A. "Recent advances in ZnO transparent thin film transistors." Thin Solid Films. 487 (2005): 205-211. AbstractWebsite

Zinc oxide is a well-known wide band gap semiconductor material (3.4 eV at room temperature, in the crystalline form), which has many applications, such as for transparent conductors, varistors, surface acoustic waves, gas sensors, piezoelectric transducers and UV detectors. More recently, it is attracting considerable attention for its possible application to thin film transistors. In this paper, we present some of the recent results already obtained as well as the ones that are being developed in our laboratory. The main advantage presented by these new thin film transistors is the combination of high channel mobility and transparency produced at room temperature which makes these thin film transistors a very promising low cost device for the next generation of invisible and flexible electronics. Moreover, the processing technology used to fabricate this device is relatively simple and it is compatible with inexpensive plastic/flexible substrate technology. © 2005 Elsevier B.V. All rights reserved.

Canhola, P.a, Martins Raniero Pereira Fortunato Ferreira Martins N. a L. b. "Role of annealing environment on the performances of large area ITO films produced by rf magnetron sputtering." Thin Solid Films. 487 (2005): 271-276. AbstractWebsite

This paper presents the role of the deposition pressure and the rf power density on the optimization of the electrical, optical and structural properties of large area (30×40 cm2) indium-tin oxide films produced by rf magnetron sputtering, with growth rates exceeding 30 nm/min. The films were produced at room temperature under reactive plasma, followed by a thermal annealing in air or formic gas. The best films' uniformity (≤±5%), compactness and surface smoothness (preferential growth orientation along (222)); and electro-optical properties (resistivity and mobility, respectively, of about 7×10-4 Ω cm and 19.6 cm2 V -1 s-1, with transmittance of about 92%) were achieved using a rf power density of 0.92 W cm-2 and a pressure of 8.5×10-2 Pa, followed by its annealing in air by about 2 h at 773 K. © 2005 Elsevier B.V. All rights reserved.

Raniero, L., Zhang Águas Ferreira Igreja Fortunato Martins S. H. I. "Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHz." Thin Solid Films. 487 (2005): 170-173. AbstractWebsite

The aim of this paper is to present results concerning the role of the buffer layer on pin devices, deposited in a single chamber for plasma enhanced chemical vapor deposition, using high hydrogen dilution and pressures at 27.12 MHz. By doing so, we allow the incorporation of nanoparticles into the i-layer, during plasma process. The results show solar cells with 8.8% efficiency with a collection efficiency of 95% in the blue region of the spectra. Apart from that, the results from impedance spectroscopy, imaginary impedance vs. real impedance, show difference of a semicircle radius as function of sample temperatures, which could be explained by total device series resistance variation. © 2005 Elsevier B.V. All rights reserved.

Martins, R., Igreja Ferreira Marques Pimentel Gonçalves Fortunato R. I. A. "Room temperature dc and ac electrical behaviour of undoped ZnO films under UV light." Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 118 (2005): 135-140. AbstractWebsite

This paper studies the dc and ac impedance behaviour of undoped ZnO thin films produced by spray pyrolysis and rf magnetron sputtering under UV light illumination, at room temperature, emphasising the role that the crystallite size, structure, surface morphology and the state of surface have on the electrical responsivities obtained. The results achieved show that the sputtered films with crystal sizes of about 4 nm exhibit dc electrical UV responsivities of 108. On the other hand, the spray pyrolysis films exhibit the lowest dc responsivities, due the high crystal sizes and state of surface contamination, to which very good capacitance responses were obtained, mainly due to the degree of porosity exhibit by these films when produced at low temperatures. Based on that, a two-phase electrical model is proposed to explain the set of behaviours observed. © 2005 Elsevier B.V. All rights reserved.

2004
Pereira, L., Águas Raniero Martins Fortunate Martins H. L. R. "Role of substrate on the growth process of polycrystalline silicon thin films by low-pressure chemical vapour deposition." Materials Science Forum. 455-456 (2004): 112-115. AbstractWebsite

This paper deals with the role the substrate on the structure of undoped and n-doped polycrystalline silicon (poly-Si) films produced by Low Pressure Chemical Vapour Deposition (LPCVD). The structural and electrical properties of the films deposited on glass, glass covered with molybdenum (Mo), oxidised crystalline silicon and oxidised crystalline silicon covered with Mo were analysed using X-ray diffraction and Spectroscopic Ellipsometry, dark conductivity and Hall effect measurements. Undoped poly-Si films deposited over Mo present modifications in the crystalline structure relatively to those deposited on the other substrates. The presence of Mo changes the preferential growth orientation, enhancing the Si {111} grains orientation, leading to more compact films. The electrical measurements also confirm that the films grown on Mo substrates present better characteristics. Some differences are also observed during the initial growth stages when using glass or oxidised silicon. Very thin n-doped films present a less effective doping effect when deposited on oxidised silicon than the ones deposited on glass substrates.

Águas, H.a, Raniero Pereira Viana Fortunato Martins L. a L. a. "Role of the rf frequency on the structure and composition of polymorphous silicon films." Journal of Non-Crystalline Solids. 338-340 (2004): 183-187. AbstractWebsite

In this work we present results of structural composition and morphological characteristics of polymorphous silicon (pm-Si:H) films deposited by PECVD at 13.56 and 27.12 MHz. In addition, the role of the excitation frequency on the growth rate will be also analyzed. The results show that by using the 27.12 MHz excitation frequency the hydrogen dilution in the plasma needed to produce pm-Si:H can be reduced by more than 50% as well as the rf power density, leading to an increase on the growth rate to values higher than 3 Å/s. Spectroscopic ellipsometry and Raman spectroscopy show that the 27.12 MHz pm-Si:H films are more ordered than the pm-Si:H films produced at 13.56 MHz, while the infrared spectroscopy show that the SiH2 concentration in the films is strongly reduced. AFM measurements reveal that the films produced at 27.12 MHz films are more structured, presenting also higher roughness. © 2004 Elsevier B.V. All rights reserved.

2002
Cabrita, A., Pereira Brida Silva Ferreira Fortunato Martins L. D. V. "Role of the density of states in the colour selection of the collection spectrum of amorphous silicon-based Schottky photodiodes." Key Engineering Materials. 230-232 (2002): 559-562. AbstractWebsite

This work deals with the study of the role of intra-gap density of states on the colour selection of the collection spectrum of glass/ITO/a-Six:C1-x:H/Al Schottky photodiodes. In order to optimise the voltage colour selection and to study the influence of intragap density of states in the final device performances, different undoped a-Six:C1-x:H films (1 μm thick) have been produced in a conventional Plasma Enhanced Chemical Vapour Deposition (PECVD) system using silane and a controlled mixtures of silane and methane as gas sources. The properties of the films were analysed by dark conductivity measurements, infrared spectroscopy, visible spectroscopy and constant photocurrent method (CPM), to determine the valence controllability and to correlate the silicon carbide layer composition with the performances of the devices. The performances obtained concerning the spectral response of the devices were correlated with the carbon content and the density of states of the a-Six:C1-x:H films.

Águas, H., Fortunato Martins E. R. "Role of the i layer surface properties on the performance of a-Si:H Schottky barrier photodiodes." Sensors and Actuators, A: Physical. 99 (2002): 220-223. AbstractWebsite

In this work, we study the influence of the hydrogenated amorphous silicon (a-Si:H) surface treatment on the J-V characteristics of a-Si:H/Pd Schottky barrier photodiodes. The a-Si:H surface were etched, thermally oxidised and wet oxidised by H2O2. The a-Si:H films were characterised by spectroscopic ellipsometry, were we found that all the oxidation techniques promote an increase of the surface oxide thickness that was confirmed by the increase of the barrier height. The highest barrier was achieved by the H2O2 oxidation where a value of 1.17 eV was found. As a result of the barrier height increase, the dark reverse current density decreases up to 10-10 A/cm2 and the signal to noise ratio increases up to 106. The open circuit voltage under AM1.5 illumination conditions also increases from 0.4 to 0.5 V. These results reveal the importance of the a-Si:H surface preparation prior to metallization to improve the Schottky photodiodes properties. © 2002 Elsevier Science B.V. All rights reserved.