Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHz

Citation:
Raniero, L., Zhang Águas Ferreira Igreja Fortunato Martins S. H. I. "Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHz." Thin Solid Films. 487 (2005): 170-173.

Abstract:

The aim of this paper is to present results concerning the role of the buffer layer on pin devices, deposited in a single chamber for plasma enhanced chemical vapor deposition, using high hydrogen dilution and pressures at 27.12 MHz. By doing so, we allow the incorporation of nanoparticles into the i-layer, during plasma process. The results show solar cells with 8.8% efficiency with a collection efficiency of 95% in the blue region of the spectra. Apart from that, the results from impedance spectroscopy, imaginary impedance vs. real impedance, show difference of a semicircle radius as function of sample temperatures, which could be explained by total device series resistance variation. © 2005 Elsevier B.V. All rights reserved.

Notes:

cited By 22

Related External Link