Publications

Export 704 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
I
Sander, M., Laven T., Mateus O., & Knotschke N. (2004).  Insular dwarfism in a brachiosaurid sauropod from the Upper Jurassic of Germany. Journal of Vertebrate Paleontology. 23, 108–108., Number Suppl. to Abstract
n/a
Jacinto, J. J., & Mateus O. (2002).  Integration of the distribution of Hemidactylus turcicus and Tarentola mauritanica in Portugal Continental in a G.I.S. and some occasional observations. Livro de resumos do VII Congresso Luso-espanhol (XI Congreso Español de Herpetologia. 127., Évora, Portugal: Sociedade Portuguesa de Herpetologia & Associacion Herpetologica Española Abstract

n/a

Jacinto, J. J., & Mateus O. (2002).  Integration of the distribution of Hemidactylus turcicus and Tarentola mauritanica in Portugal Continental in a G.I.S. and some occasional observations. (Sociedade Portuguesa de, Herpetologia, Ed.).Livro de resumos do VII Congresso Luso-espanhol (XI Congreso Español) de Herpetologia. 127., Évora, Portugal Abstract
n/a
Jacinto, J. J., & Mateus O. (2002).  Integration of the distribution of Hemidactylus turcicus and Tarentola mauritanica in Portugal Continental in a G.I.S. and some occasional observations. Livro de resumos do VII Congresso Luso-espanhol (XI Congreso Español) de Herpetologia. 127–127., Évora, Portugal Abstract
n/a
Brandao, J., Callapez, P., O. Mateus, Castro, P (Eds.). (2009).  International Conference on the Geological Collections and Museums: mission and management. Abstract
n/a
authors listed, N. (2009).  International Conference on the Geological Collections and Museums: mission and management.. (Brandao J, Callapez P, Mateus O, Castro P, Ed.). , Jan: Journal of Paleontological Techniques 5 (special volume) Abstract
n/a
Rotatori, F. M., Moreno-Azanza M., & Mateus O. (2018).  Isolated dryosaurid (Dinosauria: Ornithopoda) cranial remains from the Late Jurassic of Portugal. EJIP Life finds a way. 95-98., Gasteiz, Spainrotatori_et_al_2018_ejip.pdf
Beccari, V., Mateus O., Wings O., Milàn J., & Clemmensen L. B. (2021).  Issi saaneq gen. et sp. nov.—A New Sauropodomorph Dinosaur from the Late Triassic (Norian) of Jameson Land, Central East Greenland. Diversity. 13, , Number 11 Abstractdiversity-13-00561-v2.pdfWebsite

The Late Triassic (Norian) outcrops of the Malmros Klint Formation, Jameson Land (Greenland) have yielded numerous specimens of non-sauropod sauropodomorphs. Relevant fossils were briefly reported in 1994 and were assigned to Plateosaurus trossingensis. However, continuous new findings of early non-sauropod sauropodomorphs around the globe facilitate comparisons and allow us to now revise this material. Here, the non-sauropod sauropodomorph Issi saaneq gen. et sp. nov. is described based on two almost complete and articulated skulls. The two skulls represent a middle-stage juvenile and a late-stage juvenile or subadult. Issi saaneq differs from all other sauropodomorphs by several unique traits: (1) a small foramen at the medial surface of the premaxilla; (2) an anteroposteriorly elongated dorsoposterior process of the squamosal; (3) a relatively high quadrate relative to rostrum height; (4) a well-developed posterodorsal process of the articular. These features cannot be explained by taphonomy, ontogeny, or intraspecific variation. Issi saaneq shows affinities to Brazilian plateosaurids and the European Plateosaurus, being recovered as the sister clade of the latter in our phylogenetic analysis. It is the northernmost record of a Late Triassic sauropodomorph, and a new dinosaur species erected for Greenland. Issi saaneq broadens our knowledge about the evolution of plateosaurid sauropodomorphs.

J
Milan, J., & Mateus O. (2005).  Jagten på Europas største dinosaur.. Naturens Verden. 88(10), 2-13.. AbstractWebsite

[In danish. Title translation: The hunt for the biggest dinosaur in Europe]

Cavadas, B., Mestrinho N., & Mateus O. (2018).  Jurassic race: a collaborative pedagogical activity between paleontologists, mathematics and science education teachers. XVI Annual Meeting of the European Association of Vertebrate Palaeontologists. 41., Caparica, Portugal June 26th-July 1st, 2018: Abstract book of the XVI Annual Meeting of the European Association of Vertebrate Palaeontologists, Caparica, Portugal June 26th-July 1st, 2018. Abstractcavadas_et_al_2018_eavp_abstract.pdf

n/a

L
Mateus, O., & Antunes M. T. (2008).  Landmarks in the history of dinosaur paleontology in Portugal, focusing on skeletal remains. Abstract volume, Dinosaurs - A Historical Perspective, 6-7 may 2008. , London Abstract

Portugal has been providing dinosaur remains since, at least, 1863. The 18th century tiles depicting the legend of Our Lady in Cabo Espichel are probably the oldest known dinosaur track illustration. To our knowledge, the first remains found in Portugal were theropod teeth collected near Porto das Barcas (Late Jurassic of Lourinhã) in June 20th, 1863 by the geologist Carlos Ribeiro (1813-1882). The first dinosaur paper was written by Henri Sauvage (1842-1917) published in 1896. All remains collected since 19th century were gathered in a work signed by Albert de Lapparent (1905-1975) and Georges Zbyszewski (1909-1999 ) titled Les Dinosauriens du Portugal (1957) that was a significant milestone in the Portuguese dinosaur paleontology and gives the state-of-the-art by the time. Several dinosaurs are named, described, depicted and mapped in that monograph. The first track record is given by Jacinto Pedro Gomes (1844-1916) in 1916. Concerning the non-scientific literature referring to dinosaurs, in 1884 the newspaper Occidente reports the Bernissart findings in Belgium. In the 1959 occurs the first visit to Portugal of Walter Kühne (1911-1991) from the Free University of Berlin. Further visits and work granted the access to the Guimarota Mine and other Late Jurassic deposits in the 1960’s, 70’s and 80’s with a high number of publications. In the 1980’s and early 1990’s starts a progressive era for dinosaur paleontology in Portugal with the works of Peter Galton, Miguel Telles Antunes, the Natural History Museum, the Museum of Lourinhã and the New University of Lisbon, Oliver Rauhut, and others.

Mateus, O., & Antunes M. T. (2008).  Landmarks in the history of dinosaur paleontology in Portugal, focusing on skeletal remains. Abstract volume, Dinosaurs - A Historical Perspective, 6-7 may 2008. , London Abstract
n/a
Mateus, O., & Antunes M. T. (2008).  Landmarks in the history of dinosaur paleontology in Portugal, focusing on skeletal remains. Abstract volume, Dinosaurs - A Historical Perspective, 6-7 may 2008. , London Abstract
n/a
Mateus, O., Walen A., & Antunes M. T. (2006).  The large theropod fauna of the Lourinhã Formation (Portugal) and its similarity to that of the Morrison Formation, with a description of new species of Allosaurus. New Mexico Museum of Natural History and Science Bulletin. 36, , Number 123-129 Abstract
n/a
Mateus, O., Walen A., & Antunes M. T. (2006).  The large theropod fauna of the Lourinhã Formation (Portugal) and its similarity to the Morrison Formation, with a description of a new species of Allosaurus. New Mexico Museum of Natural History and Science Bulletin. 36, 123-129. Abstractmateus_walen_antunes_-_2006_-_the_large_theropod_fauna_of_the_lourinha_formation__portugal__and_its_similarity_to_the_morrison_formation__with_a_description_of_a_new_species_of_allosaurus.pdf

Late Jurassic theropod dinosaurs have been known in Portugal since 1863 but only now are they being fully understood, with the recognition of genera such as Allosaurus, Aviatyrannis, Ceratosaurus, Lourinhanosaurus, and Torvosaurus from the Lourinhã and Alcobaça Formations (Kimmeridgian/Tithonian). Ceratosaurus dentisulcatus can now be reported from Portugal. It represents the only occurrence of this species outside the Morrison Formation.
New cranial elements confirm the presence of Torvosaurus tanneri, in Portugal. Torvosaurus was the largest Late Jurassic land carnivore. New postcranial and cranial elements allow the erection of a new species from Portugal, Allosaurus europaeus n.sp. The theropod assemblage of Portugal is similar to that of the Morrison Formation.

Strganac, C., Jacobs L. L., Ferguson K. M., Polcyn M. J., Mateus O., Schulp A. S., & Morais M. L. (2013).  Late Cretaceous marine reptiles and cooling at the South Atlantic coast inferred through stable oxygen isotopes of Inoceramus from the Namibe Basin, Angola. Geological Society of America Abstracts with Programs. Vol. 45, No. 7, p.0.
Mateus, O., & Antunes M. T. (2000).  Late Jurassic dinosaurs of Portugal. Abstracts of the 1st Symposium of European Dinosaurs. , Dusseldorf, Germany. Abstract
n/a
Mateus, O., & Antunes M. T. (2000).  Late Jurassic dinosaurs of Portugal. Abstracts of the 1st Symposium of European Dinosaurs. , Dusseldorf, Germany. Abstract
n/a
Mateus, O., & Antunes M. T. (2000).  Late Jurassic dinosaurs of Portugal.. Abstracts of the 1st Symposium of European Dinosaurs, p.18. , Dusseldorf, Germany. Abstractmateus__antunes_2000_late_jurassic_dinosaurs_of_portugal_dusseldorf_2000.pdf

n/a

Belvedere, M., Castanera D., Meyer C. A., Marty D., Mateus O., Silva B. C., Santos V. F., & Cobos A. (2019).  Late Jurassic globetrotters compared: A closer look at large and giant theropod tracks of North Africa and Europe. Journal of African Earth Sciences. 158, 103547. Abstractbelvedere_et_al_2019_jurassic_globetrotters_compared.pdfWebsite

Late Jurassic theropod tracks are very common both in North Africa and Europe. Two recently described ichnotaxa Megalosauripus transjuranicus and Jurabrontes curtedulensis from the Kimmeridgian of Switzerland show the coexistence of two apex predators in the same palaeoenvironment. Similar tracks can be found in tracksites from the Iberian Peninsula and from Morocco. Here, we further explore the similarities among the Swiss ichnotaxa and the other tracks from Germany (Kimmeridgian), Spain (Tithonian-Berriasian), Portugal (Oxfordian-Tithonian) and Morocco (Kimmeridgian) through novel three-dimensional data comparisons. Specimens were grouped in two morphotypes: 1) large and gracile (30 < Foot Length<50 cm) and 2) giant and robust (FL > 50 cm). The analyses show a great morphological overlap among these two morphotypes and the Swiss ichnotaxa (Megalosauripus transjuranicus and Jurabrontes curtedulensis, respectively), even despite the differences in sedimentary environment and age. This suggests a widespread occurrence of similar ichnotaxa along the western margin of Tethys during the Late Jurassic. The new data support the hypothesis of a Gondwana-Laurasia faunal exchange during the Middle or early Late Jurassic, and the presence of migratory routes around the Tethys.

Mateus, O. (2016).  Late Jurassic of Morrison Formation and Portugal tetrapods compared: a model to explain faunal exchange and similarity. Annual Meeting of the Society of Vertebrate Paleontology. 185., Salt Late City: Journal of Vertebrate Paleontology, Program and Abstracts, 2016 Abstractmateus_2016_late_jurassic_morrison_svp_abstract.pdf

The precursor of the North Atlantic existed between the North American and Iberian blocks from the earliest Jurassic Hettangian and has been ever expanding since. By the Kimmeridgian and Tithonian, when much of the Morrison Fm rocks were deposited, the proto-Atlantic was more than 300 km wide at 27° paleolatitude between North America and Iberia. Macrovertebrate paleontology reveals a unique story to the isolation of Iberia and instead suggest a paleogeographic land connection between North American and Iberia. Torvosaurus, Allosaurus, Ceratosaurus, Stegosaurus, Supersaurus and others have a distribution restricted to Morrison Formation in North America and Lourinhã Formation in Portugal. A novel paleogeographic model is here suggested: (1) around the Middle–Late Jurassic transition there is a major palaeoceanographic and palaeoclimatic reorganization, coincidental to a major eustatic sea-level drop and uplift associated with the Callovian– Oxfordian Atlantic Regressive Event; (2) creating an ephemeral land bridge presenting a temporary opportunity for terrestrial gateways likely across the Flemish Cap and Galician Bank land masses, allowing large dinosaurian taxa to cross the northern proto-Atlantic in both directions; (3) finally, a Callovian–Oxfordian faunal exchange around the 163 Ma, through latest Kimmeridgian at 152 Ma (the age of equivalent genera in both Morrison and Portugal), is was an interval that allowed speciation, but retaining generic similarity of vertebrates. This model is consistent with the chronology and taxonomy required for speciation of the Iberian and American forms, exemplified by the coeval sister-taxa pairs Torvosaurus tanneri and T. gurneyi, Allosaurus fragilis and A. europaeus, or Supersaurus vivianae and S. lourinhanensis. While some of the smaller animals in the fauna show Morrison/Portugal affinities, most from Iberia have European or even Asian affinities. The larger-bodied fauna are more closely related to Morrison than to mainland Europe (except for dacentrurine stegosaurs). The body size differences and affinities of taxa across paleogeography is comparable to what is observed today across the Wallace Line. Migration may have also occurred in both directions. The closest relative of Torvosaurus is likely the European Bathonian Megalosaurus, thus the presence of the genus in North America represents a European migration. On other hand, Allosaurus and Supersaurus origins are consistent with a North American origin, representing an westto-east migration.

Mateus, O. (2016).  Late Jurassic of Morrison Formation and Portugal tetrapods compared: a model to explain faunal exchange and similarity. Annual Meeting of the Society of Vertebrate Paleontology. 185., Salt Late City: Journal of Vertebrate Paleontology, Program and Abstracts, 2016 Abstract

The precursor of the North Atlantic existed between the North American and Iberian blocks from the earliest Jurassic Hettangian and has been ever expanding since. By the Kimmeridgian and Tithonian, when much of the Morrison Fm rocks were deposited, the proto-Atlantic was more than 300 km wide at 27° paleolatitude between North America and Iberia. Macrovertebrate paleontology reveals a unique story to the isolation of Iberia and instead suggest a paleogeographic land connection between North American and Iberia. Torvosaurus, Allosaurus, Ceratosaurus, Stegosaurus, Supersaurus and others have a distribution restricted to Morrison Formation in North America and Lourinhã Formation in Portugal. A novel paleogeographic model is here suggested: (1) around the Middle–Late Jurassic transition there is a major palaeoceanographic and palaeoclimatic reorganization, coincidental to a major eustatic sea-level drop and uplift associated with the Callovian– Oxfordian Atlantic Regressive Event; (2) creating an ephemeral land bridge presenting a temporary opportunity for terrestrial gateways likely across the Flemish Cap and Galician Bank land masses, allowing large dinosaurian taxa to cross the northern proto-Atlantic in both directions; (3) finally, a Callovian–Oxfordian faunal exchange around the 163 Ma, through latest Kimmeridgian at 152 Ma (the age of equivalent genera in both Morrison and Portugal), is was an interval that allowed speciation, but retaining generic similarity of vertebrates. This model is consistent with the chronology and taxonomy required for speciation of the Iberian and American forms, exemplified by the coeval sister-taxa pairs Torvosaurus tanneri and T. gurneyi, Allosaurus fragilis and A. europaeus, or Supersaurus vivianae and S. lourinhanensis. While some of the smaller animals in the fauna show Morrison/Portugal affinities, most from Iberia have European or even Asian affinities. The larger-bodied fauna are more closely related to Morrison than to mainland Europe (except for dacentrurine stegosaurs). The body size differences and affinities of taxa across paleogeography is comparable to what is observed today across the Wallace Line. Migration may have also occurred in both directions. The closest relative of Torvosaurus is likely the European Bathonian Megalosaurus, thus the presence of the genus in North America represents a European migration. On other hand, Allosaurus and Supersaurus origins are consistent with a North American origin, representing an westto-east migration.

Mateus, O. (2016).  Late Jurassic of Morrison Formation and Portugal tetrapods compared: a model to explain faunal exchange and similarity. Annual Meeting of the Society of Vertebrate Paleontology. 185., Salt Late City Abstract
n/a
Araújo, R., Castanhinha R., Mateus O., & Martins R. (2012).  Late Jurassic theropod embryos from Porto das Barcas, Lourinhã formation, Portugal. Journal of Vertebrate Paleontology, Program and Abstracts, 2012, ISSN 1937-2809 . 57. Abstractaraujo_et_al_mateus_2012_dinosaur_eggs_portugal_svp_2012_abstract_book_meeting_abstracts.pdf.pdf

A clutch of several crushed eggs and embryos from the Late Jurassic (near the Kimmeridgian-Tithonian
boundary), Lourinhã Formation, Portugal contains a complete maxilla, erupted and scattered teeth,
and presacral vertebrae. The maxilla bears four teeth separated by individualized interdental plates,
the dorsal process of the maxilla is confluent with the maxillary body, the ventral rim of the antorbital
fossa is parallel to the tooth row, and the anterior border of the maxilla forms a right angle with the
ventral margin. The teeth are conical and recurved distally with carinae on mesial and distal sides. The
vertebrae are amphiplatyan, with a ventral pair of neurovascular foramina and heavily pitted articular
facets. These fossils allow unambiguous association of basal theropod osteology (Megalosauroidea) with
a new eggshell morphotype. Synchrotron micro-computed tomographic scanning (SRμCT), scanning
electron microscopy, and thin-sections under polarized and normal light revealed that the outer
ornamentation of the eggshell is composed of anastomosing ridges and islets, the pores communicate
near the outer region of the eggshells, and in radial section they are irregular canals that ramify towards
the surface. Micro-proto induced x-ray emission (micro-PIXE) analysis of the eggshell (excluding pores)
revealed the presence of Mg, Fe, Mn (0.33%, 0.27% and 0.18%, respectively) and several trace elements,
with a corresponding loss of Ca (39.4% detected but 40.0% expected for calcite), which suggests minimal
eggshell diagenesis. The eggshells do not luminesce, which could imply that no diagenetic alteration
took effect. However, the quenching effect of Fe2+ has to be taken into consideration. Conversely,
luminescence is observed in the pores since they are filled with sediment, composed of phyllosilicates,
as revealed by SRμCT, micro-PIXE and x-ray diffraction analyses.

Mateus, O., Clemmensen L., Klein N., Wings O., Frobøse N., Milàn J., Adolfssen J., & Estrup E. (2014).  The Late Triassic of Jameson Land revisited: new vertebrate findings and the first phytosaur from Greenland. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 182.mateus_et_al2014-_jameson_land_revisited_-_svp_2014.pdf
Leal, A. A., Dionísio A., Braga M. A. S., & Mateus O. (2016).  The long term preservation of Late Jurassic sandstone dinosaur footprints in a museum environment. International Journal of Conservation Science. 7(3), 627-646. AbstractWebsite

This study focuses on the assessment of the degradation processes occurring in three sandstone infills of fossilized Late Jurassic ornithopod tridactyl footprints, found in 2001 in a coastline cliff in Porto das Barcas (Lourinhã, Portugal) and exhibited in a museum display since 2004. These dinosaur footprints present nowadays severe decay phenomena compromising their physical integrity and are leading gradually to their loss of value. The deterioration patterns were recorded, a map of their distribution was prepared and several samples were collected both in the dinosaur footprints and in the coastline cliff. Different analytical procedures were applied such as XRD, FTIR, FESEM and Ion Chromatography. A microclimatic survey was also performed and air temperature and relative humidity was measured during eight months both indoor and also outdoor. The decay patterns observed are a combination intrinsic and extrinsic factors the stone material, namely swelling of clay minerals in the rock matrix (smectite and chlorite-smectite mixed-layer), presence of salts (mainly chlorides), application of past conservation treatments (poly(vinyl) acetate and epoxy resins) and with the museum's indoor thermohygrometric conditions (mainly non-stable hygrometric conditions). This scientific knowledge is therefore essential to the sustainable preservation of this paleontological heritage.

Leal, A. A., Dion{\'ısio A., Braga M. A. S., & Mateus O. (2016).  The long term preservation of Late Jurassic sandstone dinosaur footprints in a museum environment. International Journal of Conservation Science. 7, 627-646. AbstractWebsite

This study focuses on the assessment of the degradation processes occurring in three sandstone infills of fossilized Late Jurassic ornithopod tridactyl footprints, found in 2001 in a coastline cliff in Porto das Barcas (Lourinhã, Portugal) and exhibited in a museum display since 2004. These dinosaur footprints present nowadays severe decay phenomena compromising their physical integrity and are leading gradually to their loss of value. The deterioration patterns were recorded, a map of their distribution was prepared and several samples were collected both in the dinosaur footprints and in the coastline cliff. Different analytical procedures were applied such as XRD, FTIR, FESEM and Ion Chromatography. A microclimatic survey was also performed and air temperature and relative humidity was measured during eight months both indoor and also outdoor. The decay patterns observed are a combination intrinsic and extrinsic factors the stone material, namely swelling of clay minerals in the rock matrix (smectite and chlorite-smectite mixed-layer), presence of salts (mainly chlorides), application of past conservation treatments (poly(vinyl) acetate and epoxy resins) and with the museum’s indoor thermohygrometric conditions (mainly non-stable hygrometric conditions). This scientific knowledge is therefore essential to the sustainable preservation of this paleontological heritage.

Leal, A. A., Dion\{\'ı\}sio A., Braga M. A. S., & Mateus O. (2016).  The long term preservation of Late Jurassic sandstone dinosaur footprints in a museum environment. International Journal of Conservation Science. 7, 627-646. Abstract
n/a
Leal, A. S., Dionísio A., Sequeira Braga M. A., & Mateus O. (2016).  The long term preservation of late jurassic sandstone dinossaur footprints in a museum environment. International Journal of Conservation Science. 7, 627-646., Number 3 Abstract
n/a
Mateus, O., & Campos H. (2018).  Loulé há mais de 220 Milhões de anos: os vertebrados fósseis do Algarve triásico. Loulé: Territórios. Memórias. Identidades. 651-659.: Museu Nacional de Arqueologia | Imprensa Nacionalmateus_campos2018_algarve_triasico.pdf
Mateus, O., and Dinis J., Cunha P. P., & and (2017).  The Lourinhã Formation: the Upper Jurassic to lower most Cretaceous of the Lusitanian Basin, Portugal – landscapes where dinosaurs walked. Ciências da Terra - Earth Sciences Journal. 19, 75–97., sep, Number 1: {NOVA}.{ID}.{FCT} AbstractWebsite
n/a
Mateus, O. (1998).  Lourinhanosaurus antunesi, a new Upper Jurassic allosauroid (Dinosauria : Theropoda) from Lourinha, Portugal. Memórias da Academia de Ciências de Lisboa. 37, 111-124. Abstract
n/a
M
Araujo, R., Castanhinha R., & Mateus O. (2008).  Major trends in the evolution of teeth and mandibles in ornithopod dinosaurs. Livro de Resumos de Tercer Congreso Latinoamericano de Paleontología de Vertebrados. 18., Neuquén, Argentina Abstractaraujo_et_al._2008._major_trends_in_the_evolution_of_teeth_and_mandibles_in_ornithopod_dinosaurs.pdf

n/a

Araujo, R., Castanhinha R., & Mateus O. (2008).  Major trends in the evolution of teeth and mandibles in ornithopod dinosaurs. Livro de Resumos de Tercer Congreso Latinoamericano de Paleontología de Vertebrados. 18., Neuquén, Argentina Abstract
n/a
Araujo, R., Castanhinha R., & Mateus O. (2008).  Major trends in the evolution of teeth and mandibles in ornithopod dinosaurs. Livro de Resumos de Tercer Congreso Latinoamericano de Paleontología de Vertebrados. 18–18., Neuquén, Argentina Abstract
n/a
Polcyn, M. J., Jacobs L. L., Mateus O., Schulp A. S., Strganac C., Araújo R., Graf J. F., Vineyard D., & Myers T. S. (2013).  A marine vertebrate assemblage from the Campanian-Maastrichtian boundary at Bentiaba, Angola. Geological Society of America Abstracts with Programs. Vol. 45, No. 7, p.0. polcyn_et_al_2013_abstract__a_marine_vertebrate_assemblage_from_the_campanian-maastrichtian_boundary_at_bentiaba_angola_2013__gsa_27-30_october_2013.pdf
Conti, S., Mateus O., & Sala G. (2021).  Mechanical characterization of tibial bone material of an ostrich. Rossi V., Fanti F., Barbieri G., Cavalazzi B. & Scarponi D. (Editors) 2021. Paleodays 2021. Abstract Book del XXI Convegno della Società Paleontologica Italiana, live virtual edition: 127 pp.. , 15-17 June, Bologna (Italy): University of Bolognaconti_et_al_2021_ostrich_bone.pdf
Pereira, B. C., Benton M. J., Ruta M., & Mateus O. (2015).  Mesozoic echinoid diversity in Portugal: Investigating fossil record quality and environmental constraints on a regional scale. Palaeogeography, Palaeoclimatology, Palaeoecology. 424, 132 - 146. Abstractpereira_e_al_2015_mesozoic_echinoids_portugal.pdfWebsite

Abstract Several analyses of diversity through geological time use global, synoptic databases, and this practice often makes it difficult to distinguish true signals in changing diversity from regional-scale sampling and/or geological artefacts. Here we investigate how echinoid diversity changed through the Mesozoic of the Lusitanian basin in Portugal based on a comprehensive, revised database, and seek to distinguish biological signal from geological or environmental constraints. The observed diversity pattern is far from having a defined trend, showing many fluctuations that appear to be linked with gaps in the geological record. This study revealed that, independently of the method used, whether correlation tests or model fitting, the diversity signal is not completely explained by the studied sampling proxies. Among the different proxies, marine facies variation in combination with outcrop area best explains the palaeodiversity curve.

Pereira, B. C., Benton M. J., Ruta M., & Mateus O. (2015).  Mesozoic echinoid diversity in Portugal: Investigating fossil record quality and environmental constraints on a regional scale. Palaeogeography, Palaeoclimatology, Palaeoecology. 424, 132-146. Abstract
n/a
Guillaume, A. R. D., Moreno-Azanza M., & Mateus O. (2018).  Microvertebrates from the Lourinhã Formation (Late Jurassic, Portugal). 1st Palaeontological Virtual Congress. online. Abstractguillaume-et-al_pvc2018_abstract.pdf

n/a