Publications

Export 702 results:
Sort by: Author Title [ Type  (Desc)] Year
Journal Article
Mateus, O., Overbeeke M., & Rita F. (2008).  Dinosaur Frauds, Hoaxes and "Frankensteins": How to distinguish fake and genuine vertebrate fossils. Journal of Paleontological Techniques. 2, 1-5. Abstract
n/a
Mateus, O., & Andersen E. (1998).  Dinosaurrede i Gedser- portugisisk specialitet udstilles i Gedser. GeologiskNyt. 3/98, 7. Abstract
n/a
Antunes, M. T., & Mateus O. (2003).  Dinosaurs of Portugal. Comptes Rendus Palevol. 2, 77-95., Number 1 Abstractantunes_mateus_2003_dinosaurs_of_portugal.pdfWebsite

A synthesis on the state of art on dinosaur knowledge in Portugal is presented. The following genera have been recognized: Ceratosaurus, Torvosaurus, Lourinhanosaurus, Allosaurus, cf. Compsognathus, Stokesosaurus, cf. Richardoestesia, cf. Archaeopteryx, Euronychodon, cf. Paronychodon, Dinheirosaurus, Lourinhasaurus, Lusotitan, cf. Pleurocoelus, Lusitanosaurus, Dacentrurus, Dracopelta, Phyllodon, Hypsilophodon, Alocodon, Trimucrodon, Draconyx, Iguanodon, and Taveirosaurus. Most are from Late Jurassic localities at the Lourinhã area and Guimarota. A new genus, Lusotitan, is here raised to include the Late Jurassic ‘Brachiosaurus’ atalaiensis. Lower Cretaceous until Cenomanian material is scarce, except for dinosaur footprints. An interesting Late-Cretaceous, mostly small dinosaur association has been collected between Aveiro and Taveiro.

Antunes, M. T., & Mateus O. (2003).  Dinosaurs of Portugal. Comptes Rendus Palevol. 2, 77–95., jan, Number 1: Elsevier {BV} AbstractWebsite
n/a
Tschopp, E., & Mateus O. (2016).  Diplodocus Marsh, 1878 (Dinosauria, Sauropoda): proposed designation of D. carnegii Hatcher, 1901 as the type species. Bulletin of Zoological Nomenclature. 73(1), 17-24. Abstracttschopp_mateus_2016_-_case_3700_-_diplodocus_type.pdf

The purpose of this application, under Articles 78.1 and 81.1 of the Code, is to replace Diplodocus longus Marsh, 1878 as the type species of the sauropod dinosaur genus Diplodocus by the much better represented D. carnegii Hatcher, 1901, due to the undiagnosable state of the holotype of D. longus (YPM 1920, a partial tail and a chevron). The holotype of D. carnegii, CM 84, is a well-preserved and mostly articulated specimen. Casts of it are on display in various museums around the world, and the species has generally been used as the main reference for studies of comparative anatomy or phylogeny of the genus. Both species are known from the Upper Jurassic Morrison Formation of the western United States. The genus Diplodocus is the basis for the family-level taxa diplodocinae Marsh, 1884, diplodocidae Marsh, 1884, diplodocimorpha Marsh, 1884 (Calvo & Salgado, 1995) and diplodocoidea Marsh, 1884 (Upchurch, 1995). It is also a specifier of at least 10 phylogenetic clades. With the replacement of D. longus by D. carnegii as type species, Diplodocus could be preserved as a taxonomic name with generally accepted content. Taxonomic stability of the entire clade diplodocoidea, and the proposed definitions of several clades within Sauropoda, could be maintained.

Tschopp, E., & Mateus O. (2016).  Diplodocus Marsh, 1878 (Dinosauria, Sauropoda): proposed designation of D. carnegii Hatcher, 1901 as the type species. Bulletin of Zoological Nomenclature. 73, 17-24. Abstract
n/a
Hendrickx, C., Mateus O., Araújo R., & Choiniere J. (2019).  The distribution of dental features in non-avian theropod dinosaurs: Taxonomic potential, degree of homoplasy, and major evolutionary trends. Palaeontologia Electronica. 22(3), 1-110. Abstractthe_distribution_of_dental_features_in_non-avian_t.pdfWebsite

Isolated theropod teeth are some of the most common fossils in the dinosaur fossil record and are continually reported in the literature. Recently developed quantitative methods have improved our ability to test the affinities of isolated teeth in a repeatable framework. But in most studies, teeth are diagnosed on qualitative characters. This can be problematic because the distribution of theropod dental characters is still poorly documented, and often restricted to one lineage. To help in the identification of isolated theropod teeth, and to more rigorously evaluate their taxonomic and phylogenetic potential, we evaluated dental features in two ways. We first analyzed the distribution of 34 qualitative dental characters in a broad sample of taxa. Functional properties for each dental feature were included to assess how functional similarity generates homoplasy. We then compiled a quantitative data matrix of 145 dental characters for 97 saurischian taxa. The latter was used to assess the degree of homoplasy of qualitative dental characters, address longstanding questions on the taxonomic and biostratigraphic value of theropod teeth, and explore the major evolutionary trends in the theropod dentition.

In smaller phylogenetic datasets for Theropoda, dental characters exhibit higher levels of homoplasy than non-dental characters, yet they still provide useful grouping information and optimize as local synapomorphies of smaller clades. In broader phylogenetic datasets, the degree of homoplasy displayed by dental and non-dental characters is not significantly different. Dental features on crown ornamentations, enamel texture and tooth microstructure have significantly less homoplasy than other dental features and can be used to identify many theropod taxa to ‘family’ or ‘sub-family’ level, and some taxa to genus or species. These features should, therefore, be a priority for investigations seeking to classify isolated teeth.

Our observations improve the taxonomic utility of theropod teeth and in some cases can help make isolated teeth useful as biostratigraphic markers. This proposed list of dental features in theropods should, therefore, facilitate future studies on the systematic paleontology of isolated teeth.

Hendrickx, C., Mateus O., Araújo R., & Choiniere J. (2019).  The distribution of dental features in non-avian theropod dinosaurs: Taxonomic potential, degree of homoplasy, and major evolutionary trends. Palaeontologia Electronica. 22, , Number 3 Abstract
n/a
Mateus, O., & Milan J. (2010).  A diverse Upper Jurassic dinosaur ichnofauna from central-west Portugal. Lethaia. 43, 245–257., Jan Abstractmateus__milan_2010_-_diverse_l_j_ichnofauna_from_lourinha_fm_portugal.pdfWebsite

A newly discovered dinosaur track-assemblage from the Upper Jurassic Lourinha˜ Formation (Lusitanian Basin, central-west Portugal), comprises medium- to large-sized sauropod tracks with well-preserved impressions of soft tissue anatomy, stegosaur tracks and tracks from medium- to large-sized theropods. The 400-m-thick Lourinha˜ Formation consists of mostly aluvial sediments, deposited during the early rifting of the Atlantic Ocean in the Kimmeridgian and Tithonian. The stratigraphic succession shows several shifts between flood-plain mud and fluvial sands that favour preservation and fossilization of tracks. The studied track-assemblage is found preserved as natural casts on the underside of a thin bivalve-rich carbonate bed near the Tithonian–Kimmeridgian boundary. The diversity of the tracks from the new track assemblage is compared with similar faunas from the Upper Jurassic of Asturias, Spain and the Middle Jurassic Yorkshire Coast of England. The Portuguese record of Upper Jurassic dinosaur body fossils show close similarity to the track fauna from the Lourinha˜ Formation.

Mateus, O., & Milàn J. (2010).  A diverse Upper Jurassic dinosaur ichnofauna from central-west Portugal. Lethaia. 43, 245-257., Number 2 Abstract
n/a
Waskow, K., & Mateus O. (2017).  Dorsal rib histology of dinosaurs and a crocodylomorph from western Portugal: Skeletochronological implications on age determination and life history traits. Comptes Rendus Palevol. 16, 425-439. Abstractwaskowmateus2017_histology.pdfWebsite

Abstract Bone histology is an important tool for uncovering life history traits of extinct animals, particularly those that lack modern analogs, such as the non-avian dinosaurs. In most studies, histological analyses preferentially focus on long bones for understanding growth rates and determining age. Here we show, by analyzing ornithischians (a stegosaur and an ornithopod), saurischians (a sauropod and a theropod), and a crocodile, rib histology is a suitable alternative. The estimated age for all sampled taxa ranges between 14 to 17 years for Lourinhanosaurus antunesi and 27 to 31 years estimated for Draconyx loureiroi. The theropod Baryonyx was skeletally mature around 23–25 years of age but showed unfused neurocentral sutures, a paedomorphic feature possibly related to aquatic locomotion. Our results show that ribs can contain a nearly complete growth record, and reveal important information about individual age, point of sexual maturity, and, in some cases, sex. Because ribs are more available than long bones, this method opens new possibilities for studying rare and incomplete fossils, including holotypes.

Mateus, O., & Antunes T. M. (2001).  Draconyx loureiroi, a new camptosauridae (Dinosauria, Ornithopoda) from the Late Jurassic of Lourinhã, Portugal. Annales de Paleontologie. 87, 61-73. Abstractmateus_antunes_2001_draconyx_loureiroi_a_new_camptosauridae_dinosauria_ornithopoda_from_the_late_jurassic_of_lourinha_portugal.pdfWebsite

A new ornithopod dinosaur is described here under the name of Draconyx loureiroi n. gen., n. sp. on teeth, caudal vertebrae, forelimb, hindlimb, and foot material that were found in association in the Late Jurassic-Tithonian of Lourinhã, Portugal. Draconyx is a Camptosauridae related to Camptosaurus.

Mateus, O., & Antunes M. T. (2001).  Draconyx loureiroi, a new camptosauridae (Dinosauria, Ornithopoda) from the Late Jurassic of Lourinhã, Portugal. Annales de Paléontologie. 87, 61–73., jan, Number 1: Elsevier {BV} AbstractWebsite
n/a
Mateus, O., Laven T., & Knotschke N. (2004).  A dwarf between giants? A new late Jurassic sauropod from Germany. Journal of Vertebrate Paleontology. 23, 90A., Number suppl. to 3mateus_et_al_2004_a_dwarf_between_giants-_a_new_late_jurassic_sauropod_from_germany_svp.pdfWebsite
Mateus, O., Laven T., & Knotschke N. (2004).  A dwarf between giants?: A new late Jurassic sauropod from Germany. Journal of Vertebrate Paleontology. 23, 90., Number suppl. to 3 Abstract
n/a
Mateus, O., Laven T., & Knotschke N. (2004).  A dwarf between giants?: A new late Jurassic sauropod from Germany. Journal of Vertebrate Paleontology. 23, 90–90., Number suppl. to Abstract
n/a
Marzola, M., Mateus O., Schulp A., Jacobs L., Polcyn M., & Pervov V. (2014).  Early Cretaceous tracks of a large mammaliamorph, a crocodylomorph, and dinosaurs from an Angolan diamond mine. Journal of Vertebrate Paleontology, Program and Abstracts, 2014. 181.marzola_et_al_2014._cretaceous_tracks_mammaliamorph_a_crocodilomorph_angolan_diamond_mine.pdf
Russo, J., Mateus O., Marzola M., & Balbino A. (2014).  Eggs and eggshells of crocodylomorpha from the Late Jurassic of Portugal. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 218.russo_et_al_2014eggs_crocodylomorpha_portugal.pdf
Mateus, O. (2014).  Eggs and eggshells of crocodylomorpha from the Late Jurassic of Portugal. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 218., Number NA: Taylor & Francis Abstract
n/a
Marinheiro, J., Mateus O., Alaoui A., Amani F., Nami M., & Ribeiro C. (2014).  Elephas and other vertebrate fossils near Taghrout, Morocco. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 178.marinheiro_et_al._2014_elephas_and_other_vertebrate_fossils_near_taghrout.pdf
Myers, T. S., Tabor N. J., Jacobs L. L., & Mateus O. (2012).  Estimating soil pCO2 using paleosol carbonates: implications for the relationship between primary productivity and faunal richness in ancient terrestrial ecosystems. Paleobiology. 38(4), 585–604. Abstractmyers_et_al_2012_estimating_soil_paleosols_portugal.pdf

In this paper we present a method for estimating soil pCO2 in ancient environments using the measured carbon-isotope values of pedogenic carbonates and plant-derived organic matter. The validity of soil pCO2 estimates proves to be highly dependent on the organic δ13C values used in the calculations. Organic matter should be sourced from the same paleosol profiles as sampled carbonates to yield the most reliable estimates of soil pCO2. In order to demonstrate the potential use of soil pCO2 estimates in paleoecological and paleoenvironmental studies, we compare samples from three Upper Jurassic localities. Soil pCO2 estimates, interpreted as a qualitative indicator of primary paleoproductivity, are used to rank the Late Jurassic terrestrial environments represented by the Morrison Formation in western North America, the informally named Lourinhã formation in Western Europe, and the Stanleyville Group in Central Africa. Because modern terrestrial environments show a positive correlation between primary productivity and faunal richness, a similar relationship is expected in ancient ecosystems. When the relative paleoproductivity levels inferred for each study area are compared with estimates of dinosaur generic richness, a positive correlation emerges. Both the Morrison and Lourinhã formations have high inferred productivity levels and high estimated faunal richness. In contrast, the Stanleyville Group appears to have had low primary productivity and low faunal richness. Paleoclimatic data available for each study area indicate that both productivity and faunal richness are positively linked to water availability, as observed in modern terrestrial ecosystems.

Mateus, O., & The Gigantic dinosaur E. (2006).  The European Enigmatic Dinosaur Evolution (in Japanese). Abstract
n/a
Coimbra, R., Moreno-Azanza M., Ezquerro L., Nuñez-Lahuerta C., Gasca J. M., Immenhauser A., Mateus O., & Rocha F. (2023).  Evaluating and comparing geochemical sampling protocols in dinosaur eggshells: refining Cretaceous ecosystem research. Cretaceous Research. 105632. Abstractsingle_file_coimbra_et_al._2023_cretresearch.pdfWebsite

The geochemical signatures of dinosaur eggshells represent well-established proxies in paleoenvironmental and paleobiological research. The variable sampling procedures reported in the literature, however, deserve attention. In order to evaluate the impact of different sampling methodologies on carbon and oxygen isotope and elemental concentrations, grinding was contrasted with drilling to extract powder samples from eggshell fragments collected at several locations. Eggshell data were further contrasted with surface materials, encasing matrix and compared with independent proxies using petrographic and elemental techniques. Iron and manganese elemental concentrations revealed an enrichment sequence depending on the sampling strategy for the same eggshell fragment. This pattern can be mistaken for a variable state of preservation. In contrast, carbon and oxygen isotope values exhibited only subtle differences and lacked clear trends. This suggests that isotope data are less susceptible to different methodological approaches. It is shown that drilling offers a wider range of possibilities compared to grinding (e.g., faster and less destructive). Additionally, drilled powder samples can confidently be used for elemental and isotope analysis, excluding contamination, thus providing a more accurate set of proxy data from eggshell archives.

Tschopp, E., & Mateus O. (2012).  Evidence for presence of clavicles and interclavicles in sauropod dinosaurs and its implications on the furcula-clavicle homology. Journal of Vertebrate Paleontology, Program and Abstracts, 2012, 184. ISSN 1937-2809 . 184. Abstracttschopp__mateus_2012_interclavicles_clavicles_svp_2012_abstract.pdf

Clavicles and interclavicles are plesiomorphically present in Reptilia. However, several groups show reduction or even loss of these elements. Crocodylimorpha, e.g., lost the clavicles, whereas dinosaurs are generally interpreted to only preserve the clavicles, the theropod furcula representing an unique case of fused clavicles. In sauropods, reports of clavicles are relatively frequent in non-titanosauriforms. These elements are elongated, curved, and rather stout bones with a spatulate and a bifurcate end. However, they were always found as single bones, and differ from the relatively short and unbifurcated clavicles found articulated with the scapulae of basal sauropodomorphs.
Elements from the Howe Quarry (Late Jurassic; Wyoming, USA) shed new light on these interpretations. Besides the elongated, curved bones (herein named morphotype A), also pairs of symmetric, L-shaped bones were recovered (morphotype B), associated with diplodocid dorsal and cervical vertebrae. Elements resembling morphotype B - articulated between the scapulae - have recently been reported from a diplodocid found near Tensleep, Wyoming. Taphonomic evidence, as well as the fact that they were preserved in symmetrical pairs, therefore implies that morphotype B represents the true sauropod clavicles.
Contrary to earlier reports, morphotype A elements from the Howe Quarry, as well as of previously reported specimens show a symmetry plane following the long axis of the elements. It is thus possible that the morphotype A elements were single bones from the body midline. The only such element present in the pectoral girdle of tetrapods are the interclavicle and the furcula. Comparison with crocodilian and lacertiform interclavicles indicates that the bifurcate end of the sauropod elements might represent the reduced transverse processes of the anterior end, and the spatulate end would have covered the coracoids or sternal plates ventrally.
The presence of both clavicles and interclavicles in the pectoral girdle stiffens the anterior trunk, and enhances considerably its stability. Such an enforcement might have been needed in diplodocids due to the strong lateral forces induced to the fore-limbs by the posteriorly placed center of mass (due to shorter fore- than hind-limbs), as well as lateral movements of the enormously elongated necks and tails. The absence of clavicles and interclavicles in titanosauriforms coincides with the development of wide-gauge locomotion style.
The presence of interclavicles in sauropods supports the recently proposed homology of the furcula with the interclavicle, instead of representing fused clavicles. Interclavicles were thus not lost, but may have remained cartilaginous or have yet to be found in basal dinosauriforms.

Araújo, R., Castanhinha R., Martins R. M. S., Mateus O., Hendrickx C., Beckmann F., Schell N., & Alves L. C. (2013).  Filling the gaps of dinosaur eggshell phylogeny: Late Jurassic Theropod clutch with embryos from Portugal. Scientific Reports. 3(1924), , 2013/05/30/onlin: Macmillan Publishers Limited. All rights reserved Abstractaraujo_et_al_2013_filling_the_gaps_of_dinosaur_eggshell_phylogeny_late_jurassic_theropod_clutch_with_embryos_from_portugal.pdf

The non-avian saurischians that have associated eggshells and embryos are represented only by the sauropodomorph Massospondylus and Coelurosauria (derived theropods), thus missing the basal theropod representatives. We report a dinosaur clutch containing several crushed eggs and embryonic material ascribed to the megalosaurid theropod Torvosaurus. It represents the first associated eggshells and embryos of megalosauroids, thus filling an important phylogenetic gap between two distantly related groups of saurischians. These fossils represent the only unequivocal basal theropod embryos found to date. The assemblage was found in early Tithonian fluvial overbank deposits of the Lourinhã Formation in West Portugal. The morphological, microstructural and chemical characterization results of the eggshell fragments indicate very mild diagenesis. Furthermore, these fossils allow unambiguous association of basal theropod osteology with a specific and unique new eggshell morphology.

Araújo, R., Castanhinha R., Martins R. M. S., Mateus O., Hendrickx C., Beckmann F., Schell N., & Alves L. C. (2013).  Filling the gaps of dinosaur eggshell phylogeny: Late Jurassic Theropod clutch with embryos from Portugal. Scientific Reports. 3, , may: Nature Publishing Group AbstractWebsite
n/a
Jésus, V. J. P., Mateus O., Milàn J., & Clemmensen L. B. (2022).  First occurrence of a frog-like batrachian (Amphibia) in the Late Triassic Fleming Fjord Group, central East Greenland. Bulletin of the Geological Society of Denmark. 70, 117–130. Abstractbull70-117-130.pdfWebsite

n/a

Adams, T. L., Polcyn M. J., Mateus O., Winkler D. A., & Jacobs L. L. (2011).  First occurrence of the long-snouted crocodyliform Terminonaris (Pholidosauridae) from the Woodbine Formation (Cenomanian) of Texas. Journal of Vertebrate Paleontology. 31, 712-716., Jan: So Methodist Univ, Univ Nova Lisboa Abstractadams_polcyn_mateus_et_al_2011_terminonaris_crocodile_pholidosauridae.pdf

n/a

Adams, T. L., Polcyn M. J., Mateus O., Winkler D. A., & Jacobs L. L. (2011).  First occurrence of the long-snouted crocodyliform Terminonaris (Pholidosauridae) from the Woodbine Formation (Cenomanian) of Texas. Journal of Vertebrate Paleontology. 31, 712-716., Number 3 Abstract
n/a
Mateus, O., Butler R. J., Brusatte S. L., Whiteside J. H., & Steyer S. J. (2014).  The first phytosaur (Diapsida, Archosauriformes) from the Late Triassic of the Iberian Peninsula. Journal of Vertebrate Paleontology. 34(4), 970-975.mateus_et_al_2014_first_phytosaur_algarve_portugal_jvp.pdfWebsite
Mateus, O., Butler R. J., Brusatte S. L., Whiteside J. H., & Steyer J. S. (2014).  The first phytosaur (Diapsida, Archosauriformes) from the Late Triassic of the Iberian Peninsula. Journal of Vertebrate Paleontology. 34, 970-975., Number 4 Abstract
n/a
Mateus, O., Butler R. J., Brusatte S. L., Whiteside J. H., & Steyer J. S. (2014).  The first phytosaur (Diapsida, Archosauriformes) from the Late Triassic of the Iberian Peninsula. Journal of Vertebrate Paleontology. 34, 970–975., Number 4 Abstract
n/a
Mateus, O., Dyke G., Motchurova-Dekova N., Ivanov P., & Kamenov G. D. (2010).  The first record of a dinosaur from Bulgaria. Lethaia. 43, 88-94., Jan Abstractmateus_et_al__2010_the_first_record_of_a_dinosaur_in_bulgaria._lethaia.pdfWebsite

A portion of a left humerus from the Upper Maastrichtian of Vratsa district (NW Bulgaria)
is shown to be from a non-avian theropod dinosaur: this is the first record of a
dinosaur from Bulgaria. We describe this bone, suggest that it most likely pertains to an
ornithomimosaur, and discuss the fossil record of other similar taxa of Late Cretaceous
age that have been reported from Europe. To investigate the taphonomy of this fossil,
rare earth element (REE) analysis is combined with strontium (Sr) isotope data to confirm
that this Bulgarian dinosaur bone was initially fossilized in a terrestrial environment,
then later re-worked into late Maastrichtian marine sediments.

Mateus, O., Dyke G. A. J., Motchurova-Dekova N., Kamenov G. D., & Ivanov P. (2010).  The first record of a dinosaur from Bulgaria. Lethaia. 43, 88-94., Number 1 Abstract
n/a
Pereira, A. M., Silva M. M., & Mateus O. (2022).  First record of Phymactis papillosa (Lesson, 1830), a Pacific south sea anemone in European shores. Journal of the Marine Biological Association of the United Kingdom. 1–4.: Cambridge University Press Abstractfirst-record-of-phymactis-papillosa-lesson-1830-a-pacific-south-sea-anemone-in-european-shores.pdfWebsite

n/a

Mateus, O., & Milan J. (2010).  First records of crocodyle and pterosaur tracks in the Upper Jurassic of Portugal.. New Mexico Museum of Natural History and Science Bulletin. 51, 83-87., Jan Abstractmateus_and_milan_2010_portugal_first_records_of_crocodyle_and_pterosaur_tracks_in_the_upper_jurassic_of_portugal.pdfWebsite

The Upper Jurassic of Portugal has a rich vertebrate fauna well documented from both body and trace fossils. Although the occurrence of crocodyles and pterosaurs is well documented from body fossils, trace fossils from both groups were unknown until now. Here we describe an isolated crocodyle-like track from Praia da Peralta and pterosaur tracks from the Kimmeridgian of Pedreira do Avelino, Sesimbra (Azóia Fm.) and Porto das Barcas, Lourinhã (Lourinhã Fm.). An enigmatic track suggests the possible presence of a small, tail-dragging tetrapod.
Possible track-makers are suggested based on the known Late Jurassic vertebrate fauna of Portugal.

Mateus, O. (2010).  First records of crocodyle and pterosaur tracks in the Upper Jurassic of Portugal.. New Mexico Museum of Natural History and Science Bulletin. 51, 83–87., 1, Number NA Abstract

The Upper Jurassic of Portugal has a rich vertebrate fauna well documented from both body and trace fossils. Although the occurrence of crocodyles and pterosaurs is well documented from body fossils, trace fossils from both groups were unknown until now. Here we describe an isolated crocodyle-like track from Praia da Peralta and pterosaur tracks from the Kimmeridgian of Pedreira do Avelino, Sesimbra (Azóia Fm.) and Porto das Barcas, Lourinhã (Lourinhã Fm.). An enigmatic track suggests the possible presence of a small, tail-dragging tetrapod. Possible track-makers are suggested based on the known Late Jurassic vertebrate fauna of Portugal.

Mallison, H., Schwarz-Wings D., Tsai H., Holliday C., & Mateus O. (2014).  Fossil longbone cartilage preserved in stegosaurs?. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 176.mallison_et_al._2014_fossil_longbone_cartilage_preserved_in_stegosaurs.pdf