Publications in the Year: 2015

Journal Article

Hendrickx, C, Hartman SA, Mateus O\á\}vio.  2015.  An overview of non-avian theropod discoveries and classification. PalArch\’\}s Journal of Vertebrate Palaeontology. 12:1-73. Abstract
n/a
Brusatte, SL, Butler RJ, Mateus O, Steyer SJ.  2015.  A new species of Metoposaurus from the Late Triassic of Portugal and comments on the systematics and biogeography of metoposaurid temnospondyls, 2015. Journal of Vertebrate PaleontologyJournal of Vertebrate Paleontology. :e912988.: Taylor & Francis Abstractbrusatte_et_al2015metoposaurusportugal.pdfWebsite

ABSTRACTMetoposaurids are a group of temnospondyl amphibians that filled crocodile-like predatory niches in fluvial and lacustrine environments during the Late Triassic. Metoposaurids are common in the Upper Triassic sediments of North Africa, Europe, India, and North America, but many questions about their systematics and phylogeny remain unresolved. We here erect Metoposaurus algarvensis, sp. nov., the first Metoposaurus species from the Iberian Peninsula, based on several new specimens from a Late Triassic bonebed in Algarve, southern Portugal. We describe the cranial and pectoral anatomy of M. algarvensis and compare it with other metoposaurids (particularly other specimens of Metoposaurus from Germany and Poland). We provide a revised diagnosis and species-level taxonomy for the genus Metoposaurus, which is currently represented with certainty by three European species (M. diagnosticus, M. krasiejowensis, M. algarvensis). We also identify cranial characters that differentiate these three species, and may have phylogenetic significance. These include features of the braincase and mandible, which indicate that metoposaurid skulls are more variable than previously thought. The new Portuguese bonebed provides further evidence that metoposaurids congregated in fluvial and lacustrine settings across their geographic range and often succumbed to mass death events. We provide an updated paleogeographic map depicting all known metoposaurid occurrences, which shows that these temnospondyls were globally distributed in low latitudes during the Late Triassic and had a similar, but not identical, paleogeographic range as phytosaurs.http://zoobank.org/urn:lsid:zoobank.org:pub:083C80C6-0AB6-49E1-A636-6A8BDBC06A47ABSTRACTMetoposaurids are a group of temnospondyl amphibians that filled crocodile-like predatory niches in fluvial and lacustrine environments during the Late Triassic. Metoposaurids are common in the Upper Triassic sediments of North Africa, Europe, India, and North America, but many questions about their systematics and phylogeny remain unresolved. We here erect Metoposaurus algarvensis, sp. nov., the first Metoposaurus species from the Iberian Peninsula, based on several new specimens from a Late Triassic bonebed in Algarve, southern Portugal. We describe the cranial and pectoral anatomy of M. algarvensis and compare it with other metoposaurids (particularly other specimens of Metoposaurus from Germany and Poland). We provide a revised diagnosis and species-level taxonomy for the genus Metoposaurus, which is currently represented with certainty by three European species (M. diagnosticus, M. krasiejowensis, M. algarvensis). We also identify cranial characters that differentiate these three species, and may have phylogenetic significance. These include features of the braincase and mandible, which indicate that metoposaurid skulls are more variable than previously thought. The new Portuguese bonebed provides further evidence that metoposaurids congregated in fluvial and lacustrine settings across their geographic range and often succumbed to mass death events. We provide an updated paleogeographic map depicting all known metoposaurid occurrences, which shows that these temnospondyls were globally distributed in low latitudes during the Late Triassic and had a similar, but not identical, paleogeographic range as phytosaurs.http://zoobank.org/urn:lsid:zoobank.org:pub:083C80C6-0AB6-49E1-A636-6A8BDBC06A47

Hansen, BB, Milàn J, Clemmensen LB, Adolfssen JS, Estrup EJ, Klein N, Mateus O, Wings O.  2015.  Coprolites from the Late Triassic Kap Stewart Formation, Jameson Land, East Greenland: morphology, classification and prey inclusions. Geological Society, London, Special Publications. 434 AbstractWebsite

A large collection of vertebrate coprolites from black lacustrine shales in the Late Triassic (Rhaetian–Sinemurian) Kap Stewart Formation, East Greenland is examined with regard to internal and external morphology, prey inclusions, and possible relationships to the contemporary vertebrate fauna. A number of the coprolites were mineralogically examined by X-ray diffraction (XRD), showing the primary mineral composition to be apatite, clay minerals, carbonates and, occasionally, quartz in the form of secondary mineral grains. The coprolite assemblage shows multiple sizes and morphotypes of coprolites, and different types of prey inclusions, demonstrating that the coprolite assemblage originates from a variety of different producers.Supplementary material: A description of the size, shape, structure, texture, contents and preservation of the 328 specimens is available at https://doi.org/10.6084/m9.figshare.c.2134335

Hendrickx, C, Hartman SA, Mateus O.  2015.  An overview of non-avian theropod discoveries and classification. PalArch’s Journal of Vertebrate Palaeontology. 12(1):1-73. Abstracthendrickx_etal_2015_non_avian_theropods_pjvp12_11.pdfWebsite

Theropods form a taxonomically and morphologically diverse group of dinosaurs that include extant birds. Inferred relationships between theropod clades are complex and have changed dramatically over the past thirty years with the emergence of cladistic techniques. Here, we present a brief historical perspective of theropod discoveries and classification, as well as an overview on the current systematics of non-avian theropods. The first scientifically recorded theropod remains dating back to the 17th and 18th centuries come from the Middle Jurassic of Oxfordshire and most likely belong to the megalosaurid Megalosaurus. The latter was the first theropod genus to be named in 1824, and subsequent theropod material found before 1850 can all be referred to megalosauroids. In the fifty years from 1856 to 1906, theropod remains were reported from all continents but Antarctica. The clade Theropoda was erected by Othniel Charles Marsh in 1881, and in its current usage corresponds to an intricate ladder-like organization of ‘family’ to ‘superfamily’ level clades. The earliest definitive theropods come from the Carnian of Argentina, and coelophysoids form the first significant theropod radiation from the Late Triassic to their extinction in the Early Jurassic. Most subsequent theropod clades such as ceratosaurs, allosauroids, tyrannosauroids, ornithomimosaurs, therizinosaurs, oviraptorosaurs, dromaeosaurids, and troodontids persisted until the end of the Cretaceous, though the megalosauroid clade did not extend into the Maastrichtian. Current debates are focused on the monophyly of deinonychosaurs, the position of dilophosaurids within coelophysoids, and megaraptorans among neovenatorids. Some recent analyses have suggested a placement of dilophosaurids outside Coelophysoidea, Megaraptora within Tyrannosauroidea, and a paraphyletic Deinonychosauria with troodontids placed more closely to avialans than dromaeosaurids.

Strganac, C, Jacobs LL, Polcyn MJ, Ferguson KM, Mateus O, Gonçalves OA, Morais M-L, da Silva Tavares T.  2015.  Stable oxygen isotope chemostratigraphy and paleotemperature regime of mosasaurs at Bentiaba, Angola, 2. Netherlands Journal of Geosciences. FirstView:1–7. Abstractstrganac_etal2015_stable_oxigen_isotopes.pdfWebsite

ABSTRACT Stable oxygen isotope values of inoceramid marine bivalve shells recovered from Bentiaba, Angola, are utilised as a proxy for paleotemperatures during the Late Cretaceous development of the African margin of the South Atlantic Ocean. The δ18O values derived from inoceramids show a long-term increase from –3.2‰ in the Late Turonian to values between –0.8 and –1.8‰ in the Late Campanian. Assuming a constant oceanic δ18O value, an ∼2‰ increase may reflect cooling of the shallow marine environment at Bentiaba by approximately 10°. Bentiaba values are offset by about +1‰ from published records for bathyal Inoceramus at Walvis Ridge. This offset in δ18O values suggests a temperature difference of ∼5° between coastal and deeper water offshore Angola. Cooler temperatures implied by the δ18O curve at Bentiaba coincide with the stratigraphic distribution of diverse marine amniotes, including mosasaurs, at Bentiaba.

Hendrickx, C, Hartman SA, Mateus O\á\}vio.  2015.  An overview of non-avian theropod discoveries and classification. PalArch\’\}s Journal of Vertebrate Palaeontology. 12:1-73. Abstract
n/a
Young, MT, Hua S, Steel L, Foffa D, Brusatte SL, Thüring S, Mateus O, Ruiz-Omeñaca JI, Havlik P, Lepage Y, de Andrade MB.  2015.  Addendum to ‘Revision of the Late Jurassic teleosaurid genus Machimosaurus (Crocodylomorpha, Thalattosuchia)’. Royal Society Open Science. 2, Number 2: The Royal Society Abstractyoung_et_al_2015_addendum_to_revision_of_the_late_jurassic_teleosaurid_genus_machimosaurus_crocodylomorpha_thalattosuchia.pdfWebsite

n/a

Hendrickx, C, Mateus O, Araujo R.  2015.  A proposed terminology of theropod teeth (Dinosauria, Saurischia). Journal of Vertebrate Paleontology. 35, Number 5 Abstract
n/a
Pereira, BC, Benton MJ, Ruta M, Mateus O.  2015.  Mesozoic echinoid diversity in Portugal: Investigating fossil record quality and environmental constraints on a regional scale. Palaeogeography, Palaeoclimatology, Palaeoecology. 424:132-146. Abstract
n/a
Strganac, C, Jacobs L, Polcyn M, Mateus O, Myers T, Araújo R, Fergunson KM, Gonçalves AO, Morais ML, Schulp AS, da Tavares TS, Salminen J.  2015.  Geological Setting and Paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, Angola. Netherlands Journal of Geosciences. 94(1):121-136. Abstractstrganac_et_al_2014_geological_setting_bentiaba_angola.pdfWebsite

The Bench 19 Bonebed at Bentiaba, Angola, is a unique concentration of marine vertebrates preserving six species of mosasaurs in sediments best correlated by magnetostratigraphy to chron C32n.1n between 71.4 and 71.64 Ma. The bonebed formed at a paleolatitude near 24°S, with an Atlantic width at that latitude approximating 2700 km, roughly half that of the current width. The locality lies on an uncharacteristically narrow continental shelf near transform faults that controlled the coastal outline of Africa in the formation of the South Atlantic Ocean. Biostratigraphic change through the Bentiaba section indicates that the accumulation occurred in an ecological time dimension within the 240 ky bin delimited by chron 32n.1n. The fauna occurs in a 10 m sand unit in the Mocuio Formation with bones and partial skeletons concentrated in, but not limited to, the basal 1–2 m. The sediment entombing the fossils is an immature feldspathic sand shown by detrital zircon ages to be derived from nearby granitic shield rocks. Specimens do not appear to have a strong preferred orientation and they are not concentrated in a strand line. Stable oxygen isotope analysis of associated bivalve shells indicates a water temperature of 18.5°C. The bonebed is clearly mixed with scattered dinosaur and pterosaur elements in a marine assemblage. Gut contents, scavenging marks and associated shed shark teeth in the Bench 19 Fauna indicate biological association and attrition due to feeding activities. The ecological diversity of mosasaur species is shown by tooth and body-size disparity and by δ13C analysis of tooth enamel, which indicate a variety of foraging areas and dietary niches. The Bench 19 Fauna was formed in arid latitudes along a coastal desert similar to that of modern Namibia on a narrow, tectonically controlled continental shelf, in shallow waters below wave base. The area was used as a foraging ground for diverse species, including molluscivorus Globidens phosphaticus, small species expected near the coast, abundant Prognathodon kianda, which fed on other mosasaurs at Bench 19, and species that may have been transient and opportunistic feeders in the area.

Hendrickx, C, Hartman SA, Mateus O.  2015.  An overview of non-avian theropod discoveries and classification. PalArch{'}s Journal of Vertebrate Palaeontology. 12:1-73., Number 1 Abstract
n/a
Clemmensen, LB, Milàn J, Adolfssen JS, Estrup EJ, Frobøse N, Klein N, Mateus O, Wings O.  2015.  The vertebrate-bearing Late Triassic Fleming Fjord Formation of central East Greenland revisited: stratigraphy, palaeoclimate and new palaeontological data. Geological Society, London, Special Publications. 434 AbstractWebsite

In Late Triassic (Norian–Rhaetian) times, the Jameson Land Basin lay at 40° N on the northern part of the supercontinent Pangaea. This position placed the basin in a transition zone between the relatively dry interior of the supercontinent and its more humid periphery. Sedimentation in the Jameson Land Basin took place in a lake–mudflat system and was controlled by orbitally forced variations in precipitation. Vertebrate fossils have consistently been found in these lake deposits (Fleming Fjord Formation), and include fishes, dinosaurs, amphibians, turtles, aetosaurs and pterosaurs. Furthermore, the fauna includes mammaliaform teeth and skeletal material. New vertebrate fossils were found during a joint vertebrate palaeontological and sedimentological expedition to Jameson Land in 2012. These new finds include phytosaurs, a second stem testudinatan specimen and new material of sauropodomorph dinosaurs, including osteologically immature individuals. Phytosaurs are a group of predators common in the Late Triassic, but previously unreported from Greenland. The finding includes well-preserved partial skeletons that show the occurrence of four individuals of three size classes. The new finds support a late Norian–early Rhaetian age for the Fleming Fjord Formation, and add new information on the palaeogeographical and palaeolatitudinal distribution of Late Triassic faunal provinces.

Araújo, R, Polcyn MJ, Lindgren J, Jacobs LL, Schulp AS, Mateus O, Gonçalves OA, Morais M-L.  2015.  New aristonectine elasmosaurid plesiosaur specimens from the Early Maastrichtian of Angola and comments on paedomorphism in plesiosaurs, 2. Netherlands Journal of Geosciences. FirstView:1–16. Abstractaraujo_et_al_2015_paedomorphism-libre.pdfWebsite

ABSTRACT New elasmosaurid plesiosaur specimens are described from the Early Maastrichtian of Angola. Phylogenetic analyses reconstruct the Angolan taxon as an aristonectine elasmosaurid and the sister taxon of an unnamed form of similar age from New Zealand. Comparisons also indicate a close relationship with an unnamed form previously described from Patagonia. All of these specimens exhibit an ostensibly osteologically immature external morphology, but histological analysis of the Angolan material suggests an adult with paedomorphic traits. By extension, the similarity of the Angolan, New Zealand and Patagonian material indicates that these specimens represent a widespread paedomorphic yet unnamed taxon.

Xing, L, Lockley MG, Marty D, Zhang J, Wang Y, Klein H, McCrea RT, Buckley LG, Belvedere M, Mateus O, Gierliński GD, Piñuela L, Persons, IV SW, Wang F, Ran H, Dai H, Xie X.  2015.  An Ornithopod-Dominated Tracksite from the Lower Cretaceous Jiaguan Formation (Barremian–Albian) of Qijiang, South-Central China: New Discoveries, Ichnotaxonomy, Preservation and Palaeoecology, 10. PLoS ONE. 10:e0141059., Number 10: Public Library of Science Abstractlida_et_al_2015_an_ornithopod-dominated_tracksite_from_the.pdfWebsite

The historically-famous Lotus Fortress site, a deep 1.5–3.0-meter-high, 200-meter-long horizonal notch high up in near-vertical sandstone cliffs comprising the Cretaceous Jiaguan Formation, has been known since the 13th Century as an impregnable defensive position. The site is also extraordinary for having multiple tetrapod track-bearing levels, of which the lower two form the floor of part of the notch, and yield very well preserved asseamblages of ornithopod, bird (avian theropod) and pterosaur tracks. Trackway counts indicate that ornithopods dominate (69%) accounting for at least 165 trackmakers, followed by bird (18%), sauropod (10%), and pterosaur (3%). Previous studies designated Lotus Fortress as the type locality of Caririchnium lotus and Wupus agilis both of which are recognized here as valid ichnotaxa. On the basis of multiple parallel trackways both are interpreted as representing the trackways of gregarious species. C. lotus is redescribed here in detail and interpreted to indicate two age cohorts representing subadults that were sometimes bipedal and larger quadrupedal adults. Two other previously described dinosaurian ichnospecies, are here reinterpreted as underprints and considered nomina dubia. Like a growing number of significant tetrapod tracksites in China the Lotus Fortress site reveals new information about the composition of tetrapod faunas from formations in which the skeletal record is sparse. In particular, the site shows the relatively high abundance of Caririchium in a region where saurischian ichnofaunas are often dominant. It is also the only site known to have yielded Wupus agilis. In combination with information from other tracksites from the Jiaguan formation and other Cretaceous formations in the region, the track record is proving increasingly impotant as a major source of information on the vertebrate faunas of the region. The Lotus Fortress site has been developed as a spectacular, geologically-, paleontologically- and a culturally-significant destination within Qijiang National Geological Park.

Brusatte, SL, Butler RJ, Mateus O, Steyer JS.  2015.  A new species of Metoposaurus from the Late Triassic of Portugal and comments on the systematics and biogeography of metoposaurid temnospondyls. Journal of Vertebrate Paleontology. 35, Number 3 Abstract
n/a
Marzola, M, Russo J, Mateus O.  2015.  Identification and comparison of modern and fossil crocodilian eggs and eggshell structures. Historical Biology. 27:115-133., Number 1 Abstract
n/a

Thesis