Publications

Export 63 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C [D] E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
D
Mateus, O., Laven T., & Knotschke N. (2004).  A dwarf between giants?: A new late Jurassic sauropod from Germany. Journal of Vertebrate Paleontology. 23, 90., Number suppl. to 3 Abstract
n/a
Mateus, O., Laven T., & Knotschke N. (2004).  A dwarf between giants?: A new late Jurassic sauropod from Germany. Journal of Vertebrate Paleontology. 23, 90–90., Number suppl. to Abstract
n/a
Mateus, O., Laven T., & Knotschke N. (2004).  A dwarf between giants? A new late Jurassic sauropod from Germany. Journal of Vertebrate Paleontology. 23, 90A., Number suppl. to 3mateus_et_al_2004_a_dwarf_between_giants-_a_new_late_jurassic_sauropod_from_germany_svp.pdfWebsite
Rotatori, F. M., Moreno-Azanza M., & Mateus O. (2018).  Dryosaurid ornithopods from the Late Jurassic of Portugal: an overview. XVI Annual Meeting of the European Association of Vertebrate Palaeontologists. 166., Caparica, Portugal June 26th-July 1st, 2018: Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Abstractrotatori_et_al_2018_eavp_abstract.pdf

n/a

Rotatori, F. M., Moreno-Azanza M., & Mateus O. (2018).  Dryosaurid ornithopods from the Late Jurassic of Portugal: an overview. XVI Annual Meeting of the European Association of Vertebrate Palaeontologists. 166., Caparica, Portugal June 26th-July 1st, 2018: Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Abstract

n/a

Mateus, O., & Antunes T. M. (2001).  Draconyx loureiroi, a new camptosauridae (Dinosauria, Ornithopoda) from the Late Jurassic of Lourinhã, Portugal. Annales de Paleontologie. 87, 61-73. Abstractmateus_antunes_2001_draconyx_loureiroi_a_new_camptosauridae_dinosauria_ornithopoda_from_the_late_jurassic_of_lourinha_portugal.pdfWebsite

A new ornithopod dinosaur is described here under the name of Draconyx loureiroi n. gen., n. sp. on teeth, caudal vertebrae, forelimb, hindlimb, and foot material that were found in association in the Late Jurassic-Tithonian of Lourinhã, Portugal. Draconyx is a Camptosauridae related to Camptosaurus.

Mateus, O., & Antunes M. T. (2001).  Draconyx loureiroi, a new camptosauridae (Dinosauria, Ornithopoda) from the Late Jurassic of Lourinhã, Portugal. Annales de Paléontologie. 87, 61–73., jan, Number 1: Elsevier {BV} AbstractWebsite
n/a
Waskow, K., & Mateus O. (2017).  Dorsal rib histology of dinosaurs and a crocodylomorph from western Portugal: Skeletochronological implications on age determination and life history traits. Comptes Rendus Palevol. 16, 425-439. Abstractwaskowmateus2017_histology.pdfWebsite

Abstract Bone histology is an important tool for uncovering life history traits of extinct animals, particularly those that lack modern analogs, such as the non-avian dinosaurs. In most studies, histological analyses preferentially focus on long bones for understanding growth rates and determining age. Here we show, by analyzing ornithischians (a stegosaur and an ornithopod), saurischians (a sauropod and a theropod), and a crocodile, rib histology is a suitable alternative. The estimated age for all sampled taxa ranges between 14 to 17 years for Lourinhanosaurus antunesi and 27 to 31 years estimated for Draconyx loureiroi. The theropod Baryonyx was skeletally mature around 23–25 years of age but showed unfused neurocentral sutures, a paedomorphic feature possibly related to aquatic locomotion. Our results show that ribs can contain a nearly complete growth record, and reveal important information about individual age, point of sexual maturity, and, in some cases, sex. Because ribs are more available than long bones, this method opens new possibilities for studying rare and incomplete fossils, including holotypes.

Mateus, O., & Milan J. (2010).  A diverse Upper Jurassic dinosaur ichnofauna from central-west Portugal. Lethaia. 43, 245–257., Jan Abstractmateus__milan_2010_-_diverse_l_j_ichnofauna_from_lourinha_fm_portugal.pdfWebsite

A newly discovered dinosaur track-assemblage from the Upper Jurassic Lourinha˜ Formation (Lusitanian Basin, central-west Portugal), comprises medium- to large-sized sauropod tracks with well-preserved impressions of soft tissue anatomy, stegosaur tracks and tracks from medium- to large-sized theropods. The 400-m-thick Lourinha˜ Formation consists of mostly aluvial sediments, deposited during the early rifting of the Atlantic Ocean in the Kimmeridgian and Tithonian. The stratigraphic succession shows several shifts between flood-plain mud and fluvial sands that favour preservation and fossilization of tracks. The studied track-assemblage is found preserved as natural casts on the underside of a thin bivalve-rich carbonate bed near the Tithonian–Kimmeridgian boundary. The diversity of the tracks from the new track assemblage is compared with similar faunas from the Upper Jurassic of Asturias, Spain and the Middle Jurassic Yorkshire Coast of England. The Portuguese record of Upper Jurassic dinosaur body fossils show close similarity to the track fauna from the Lourinha˜ Formation.

Mateus, O., & Milàn J. (2010).  A diverse Upper Jurassic dinosaur ichnofauna from central-west Portugal. Lethaia. 43, 245-257., Number 2 Abstract
n/a
Hendrickx, C., Mateus O., Araújo R., & Choiniere J. (2019).  The distribution of dental features in non-avian theropod dinosaurs: Taxonomic potential, degree of homoplasy, and major evolutionary trends. Palaeontologia Electronica. 22(3), 1-110. Abstractthe_distribution_of_dental_features_in_non-avian_t.pdfWebsite

Isolated theropod teeth are some of the most common fossils in the dinosaur fossil record and are continually reported in the literature. Recently developed quantitative methods have improved our ability to test the affinities of isolated teeth in a repeatable framework. But in most studies, teeth are diagnosed on qualitative characters. This can be problematic because the distribution of theropod dental characters is still poorly documented, and often restricted to one lineage. To help in the identification of isolated theropod teeth, and to more rigorously evaluate their taxonomic and phylogenetic potential, we evaluated dental features in two ways. We first analyzed the distribution of 34 qualitative dental characters in a broad sample of taxa. Functional properties for each dental feature were included to assess how functional similarity generates homoplasy. We then compiled a quantitative data matrix of 145 dental characters for 97 saurischian taxa. The latter was used to assess the degree of homoplasy of qualitative dental characters, address longstanding questions on the taxonomic and biostratigraphic value of theropod teeth, and explore the major evolutionary trends in the theropod dentition.

In smaller phylogenetic datasets for Theropoda, dental characters exhibit higher levels of homoplasy than non-dental characters, yet they still provide useful grouping information and optimize as local synapomorphies of smaller clades. In broader phylogenetic datasets, the degree of homoplasy displayed by dental and non-dental characters is not significantly different. Dental features on crown ornamentations, enamel texture and tooth microstructure have significantly less homoplasy than other dental features and can be used to identify many theropod taxa to ‘family’ or ‘sub-family’ level, and some taxa to genus or species. These features should, therefore, be a priority for investigations seeking to classify isolated teeth.

Our observations improve the taxonomic utility of theropod teeth and in some cases can help make isolated teeth useful as biostratigraphic markers. This proposed list of dental features in theropods should, therefore, facilitate future studies on the systematic paleontology of isolated teeth.

Hendrickx, C., Mateus O., Araújo R., & Choiniere J. (2019).  The distribution of dental features in non-avian theropod dinosaurs: Taxonomic potential, degree of homoplasy, and major evolutionary trends. Palaeontologia Electronica. 22, , Number 3 Abstract
n/a
Tschopp, E., & Mateus O. (2016).  Diplodocus Marsh, 1878 (Dinosauria, Sauropoda): proposed designation of D. carnegii Hatcher, 1901 as the type species. Bulletin of Zoological Nomenclature. 73(1), 17-24. Abstracttschopp_mateus_2016_-_case_3700_-_diplodocus_type.pdf

The purpose of this application, under Articles 78.1 and 81.1 of the Code, is to replace Diplodocus longus Marsh, 1878 as the type species of the sauropod dinosaur genus Diplodocus by the much better represented D. carnegii Hatcher, 1901, due to the undiagnosable state of the holotype of D. longus (YPM 1920, a partial tail and a chevron). The holotype of D. carnegii, CM 84, is a well-preserved and mostly articulated specimen. Casts of it are on display in various museums around the world, and the species has generally been used as the main reference for studies of comparative anatomy or phylogeny of the genus. Both species are known from the Upper Jurassic Morrison Formation of the western United States. The genus Diplodocus is the basis for the family-level taxa diplodocinae Marsh, 1884, diplodocidae Marsh, 1884, diplodocimorpha Marsh, 1884 (Calvo & Salgado, 1995) and diplodocoidea Marsh, 1884 (Upchurch, 1995). It is also a specifier of at least 10 phylogenetic clades. With the replacement of D. longus by D. carnegii as type species, Diplodocus could be preserved as a taxonomic name with generally accepted content. Taxonomic stability of the entire clade diplodocoidea, and the proposed definitions of several clades within Sauropoda, could be maintained.

Tschopp, E., & Mateus O. (2016).  Diplodocus Marsh, 1878 (Dinosauria, Sauropoda): proposed designation of D. carnegii Hatcher, 1901 as the type species. Bulletin of Zoological Nomenclature. 73, 17-24. Abstract
n/a
Mateus, O. (1998).  Dinossauros Portugueses. Caderno de resumos do I Congresso de Estudantes de Biologia. 13., Évora Abstractmateus_1998_dinossauros_portugueses_i_congresso_estudantes_biologia.pdf.pdf

Does not have ISSN or ISBN

Mateus, O. (1998).  Dinossauros Portugueses. Caderno de resumos do I Congresso de Estudantes de Biologia. 13., Évora Abstract
n/a
Mateus, O. (1998).  Dinossauros Portugueses. Caderno de resumos do I Congresso de Estudantes de Biologia. 13–13., Évora Abstract
n/a
Mateus, O. (2005).  Dinossauros do Jurássico Superior de Portugal, com destaque para os saurísquios. Universidade Nova de Lisboa. , Lisboa
Mateus, O. (1998).  Dinossauros de Portugal e um novo terópode do Jurássico Superior da Lourinhã. , Évora: Universidade de Évora Abstract
n/a
Antunes, M. T., & Mateus O. (2003).  Dinosaurs of Portugal. Comptes Rendus Palevol. 2, 77-95., Number 1 Abstractantunes_mateus_2003_dinosaurs_of_portugal.pdfWebsite

A synthesis on the state of art on dinosaur knowledge in Portugal is presented. The following genera have been recognized: Ceratosaurus, Torvosaurus, Lourinhanosaurus, Allosaurus, cf. Compsognathus, Stokesosaurus, cf. Richardoestesia, cf. Archaeopteryx, Euronychodon, cf. Paronychodon, Dinheirosaurus, Lourinhasaurus, Lusotitan, cf. Pleurocoelus, Lusitanosaurus, Dacentrurus, Dracopelta, Phyllodon, Hypsilophodon, Alocodon, Trimucrodon, Draconyx, Iguanodon, and Taveirosaurus. Most are from Late Jurassic localities at the Lourinhã area and Guimarota. A new genus, Lusotitan, is here raised to include the Late Jurassic ‘Brachiosaurus’ atalaiensis. Lower Cretaceous until Cenomanian material is scarce, except for dinosaur footprints. An interesting Late-Cretaceous, mostly small dinosaur association has been collected between Aveiro and Taveiro.

Antunes, M. T., & Mateus O. (2003).  Dinosaurs of Portugal. Comptes Rendus Palevol. 2, 77–95., jan, Number 1: Elsevier {BV} AbstractWebsite
n/a
Mateus, O., & Andersen E. (1998).  Dinosaurrede i Gedser- portugisisk specialitet udstilles i Gedser. GeologiskNyt. 3/98, 7. Abstract
n/a
Milàn, J., & Mateus O. (2024).  Dinosaurfund fra Jylland. Magasinet Naturen. 2024(1), 52-55.milan__mateus_2024_-_jydske_dinosaurer.pdfWebsite
Marques, M. I. F., & Mateus O. (2021).  Dinosaur tracksites from Portugal, focused on the carbonated platform of North and Central Lusitanian Basin. 3rd Palaeontological Virtual Congress. 210.: ISBN 978-84-09-36657-6 Abstractmarques_mateus_2021_pvc3_tracks.pdf

n/a

Mateus, O., & Marzola M. (2014).  Dinosaur taphonomy in the Lourinhã Formation (Late Jurassic, Portugal). 7th International Meeting on Taphonomy and Fossilization, Taphos 2014. 60-61., Ferrara, Italymateus__marzola_2014_lourinha_taphonomy_ferrara_taphonomy_meeting_2014.pdf
Mateus, O. (2014).  Dinosaur taphonomy in the Lourinhã Formation (Late Jurassic, Portugal). International Meeting on Taphonomy and Fossilization. 60–61. Abstract
n/a
Mateus, O., Antunes M. T., & Taquet P. (2001).  Dinosaur ontogeny : the case of Lourinhanosaurus (Late Jurassic, Portugal). J. Vertebr. Paleontol. 21, Abstract
n/a
Mateus, O., Overbeeke M., & Rita F. (2008).  Dinosaur Frauds, Hoaxes and "Frankensteins": How to distinguish fake and genuine vertebrate fossils. Journal of Paleontological Techniques. 2, 1-5.. Abstractmateus_et_al_2008_dinosaur_frauds_hoaxes_and_frankensteins-_how_to_distinguish_fake_and_genuine_vertebrate_fossils._journal_of_paleontological_techniques.pdfWebsite

Dinosaurs and other fossils have been artificially enhanced, or totally forged, to increase their commercial value. The most problematic forgeries to detect are based on original fossils that are artificially assembled. Several techniques are suggested for detecting hoaxes: detailed visual examination, chemical analysis, Xray or CT-scan, and ultraviolet light. It is recommended that museums and paleontological researchers do not purchase and/or trade fossils lacking clear provenience information. Exceptions to that general rule should be closely examined using techniques described herein.

Mateus, O., Overbeeke M., & Rita F. (2008).  Dinosaur Frauds, Hoaxes and "Frankensteins": How to distinguish fake and genuine vertebrate fossils. Journal of Paleontological Techniques. 2, 1-5. Abstract
n/a
Castanhinha, R., Araújo R., & Mateus O. (2009).  Dinosaur eggshell and embryo localities in Lourinhã Formation, Late Jurassic, Portugal. Journal of Vertebrate Paleontology, 29(3): . 76A. Abstractcastanhinhaetal2009dinosaureggshellp.pdf

Four different localities from the Late Jurassic of Lourinhã formation with eggshells and embryos were studied: Paimogo (lower Amoreira-Porto Novo member), Peralta (Praia Azul member), Porto das barcas (Bombarral member) and Casal da Rôla (Amoreira-Porto Novo member). All but Casal da Rôla have embryonic material. Preliminary results show that eggshells from Paimogo correspond to obliquiprismatic morphotype (0.92mm thick), similar to those from Morrison Formation. Within Paimogo site a different type of eggshell was discovered, having a radial section of 153 μm with a mammilary layer measuring 65 μm. Porto das Barcas eggshells represent a discretispherulitic morphotype (1,23 mm thick).
This locality presents a nest 60-cm diameter containing many eggshells but an indeterminate number of eggs. Some embryonic bones were discovered between the eggshells including teeth and skull bones showing that the eggs belong to a saurischian, tentatively a sauropod dinosaur. Peralta nest eggshells are preliminary ascribed to obliquiprismatic morphotype (column: 0,56mm and mammilla: 0,21mm) probably related to Paimogo’s nest taxon (Lourinhanosaurus). Peralta site bears embryonic bones namely small theropod teeth associated with bone fragments, and unidentifiable dinosaur vertebra. Only eggshells have been collected at Casal da Rôla (ML1194). The eggshells (0,78mm thick) are prismatic morphotype and it was impossible to determine the pore system, the outer surface is smooth with no ornamentation.
Lourinhã formation has the oldest sauropod and theropod nest with embryos known so far.

Mateus, O. (2009).  DINOSAUR EGGSHELL AND EMBRYO LOCALITIES IN LOURINHA FORMATION, LATE JURASSIC, PORTUGAL. Journal of Vertebrate Paleontology. 29, 76A–76A., 1 Abstract
n/a
Castanhinha, R., Araujo R., & Mateus O. (2009).  Dinosaur eggshell and embryo localities in Lourinhã Formation, Late Jurassic, Portugal. Journal of Vertebrate Paleontology. 29, 76., Number 3 Abstract
n/a
Castanhinha, R., Araujo R., & Mateus O. (2009).  Dinosaur eggshell and embryo localities in Lourinhã Formation, Late Jurassic, Portugal. Journal of Vertebrate Paleontology. 29, 76–76., Number 3 Abstract
n/a
Mateus, O., Jacobs L. L., Polcyn M. J., Schulp A. S., Neto A. B., & Antunes M. T. (2008).  Dinosaur and turtles from the Turonian of Iembe, Angola. Livro de Resumos de Tercer Congreso Latinoamericano de Paleontologia de Vertebrados. 156., Neuquén, Argentina Abstractmateus_et_al_2008_dinosaur_and_turtles_from_the_turonian_of_iembe_angola.pdf

n/a

Mateus, O., Jacobs L. L., Polcyn M. J., Schulp A. S., Neto A. B., & Antunes M. T. (2008).  Dinosaur and turtles from the Turonian of Iembe, Angola. Livro de Resumos de Tercer Congreso Latinoamericano de Paleontología de Vertebrados. 156., Neuquén, Argentina Abstract
n/a
Mateus, O., Jacobs L. L., Polcyn M. J., Schulp A. S., Neto A. B., & Antunes M. T. (2008).  Dinosaur and turtles from the Turonian of Iembe, Angola. Livro de Resumos de Tercer Congreso Latinoamericano de Paleontología de Vertebrados. 156–156., Neuquén, Argentina Abstract
n/a
Martins, R. M. S., Beckmann F., Castanhinha R., Mateus O., & Pranzas P. K. (2011).  Dinosaur and crocodile fossils from the mesozoic of Portugal: Neutron tomography and synchrotron-radiation based micro-computed tomography. Materials Research Society Symposium Proceedings. 1319, 319-332. Abstract
n/a
Tomas, C., Mateus O., & Abreu C. (2009).  Dinolourinhã; a integração dos jovens na paleontologia: o caso-estudo do Museu da Lourinhã. Journal of Paleontological Techniques 5: 28-29.. 28-29., Jan Abstracttomas_et_al_2009_dinolourinha_abstracts_jpt.pdf

n/a

Mateus, O. (2009).  Dinolourinhã – a integração dos jovens na paleontologia: o caso-estudo do Museu da Lourinhã.. Journal of Paleontological Techniques. 28–29., 1 Abstract
n/a
Tomas, C., Mateus O., & Abreu C. (2009).  Dinolourinhã – a integração dos jovens na paleontologia: o caso-estudo do Museu da Lourinhã.. Journal of Paleontological Techniques 5: 28-29.. Abstract
n/a
Hendrickx, C., Mateus O., & Araújo R. (2014).  The dentition of Megalosauridae (Theropoda: Dinosauria). {APP}. : Polska Akademia Nauk Instytut Paleobiologii (Institute of Paleobiology, Polish Academy of Sciences) AbstractWebsite
n/a
Hendrickx, C., Mateus O., & Araújo R. (2014).  The dentition of megalosaurid theropods, with a proposed terminology on theropod teeth. XII EAVP Meeting XII Annual Meeting of the European Association of Vertebrate Palaeontologists – Abstract Book. p. 75., Torino 24-28 June 2014hendrickx_et_al_2014_megalosaurid_teeth_eavp.pdf