Late Jurassic theropod embryos from Porto das Barcas, Lourinhã formation, Portugal

Citation:
Araújo, R., Castanhinha R., Mateus O., & Martins R. (2012).  Late Jurassic theropod embryos from Porto das Barcas, Lourinhã formation, Portugal. Journal of Vertebrate Paleontology, Program and Abstracts, 2012, ISSN 1937-2809 . 57.

Abstract:

A clutch of several crushed eggs and embryos from the Late Jurassic (near the Kimmeridgian-Tithonian
boundary), Lourinhã Formation, Portugal contains a complete maxilla, erupted and scattered teeth,
and presacral vertebrae. The maxilla bears four teeth separated by individualized interdental plates,
the dorsal process of the maxilla is confluent with the maxillary body, the ventral rim of the antorbital
fossa is parallel to the tooth row, and the anterior border of the maxilla forms a right angle with the
ventral margin. The teeth are conical and recurved distally with carinae on mesial and distal sides. The
vertebrae are amphiplatyan, with a ventral pair of neurovascular foramina and heavily pitted articular
facets. These fossils allow unambiguous association of basal theropod osteology (Megalosauroidea) with
a new eggshell morphotype. Synchrotron micro-computed tomographic scanning (SRμCT), scanning
electron microscopy, and thin-sections under polarized and normal light revealed that the outer
ornamentation of the eggshell is composed of anastomosing ridges and islets, the pores communicate
near the outer region of the eggshells, and in radial section they are irregular canals that ramify towards
the surface. Micro-proto induced x-ray emission (micro-PIXE) analysis of the eggshell (excluding pores)
revealed the presence of Mg, Fe, Mn (0.33%, 0.27% and 0.18%, respectively) and several trace elements,
with a corresponding loss of Ca (39.4% detected but 40.0% expected for calcite), which suggests minimal
eggshell diagenesis. The eggshells do not luminesce, which could imply that no diagenetic alteration
took effect. However, the quenching effect of Fe2+ has to be taken into consideration. Conversely,
luminescence is observed in the pores since they are filled with sediment, composed of phyllosilicates,
as revealed by SRμCT, micro-PIXE and x-ray diffraction analyses.