Publications

Export 55 results:
Sort by: Author Title Type [ Year  (Asc)]
2021
López-Rojas, V., Mateus O., Milàn J., Wings O., Klein N., & Clemmensen L. B. (2021).  A new phytosaur from the Late Triassic of Jameson Land, Greenland. 3rd Palaeontological Virtual Congress. 207.: ISBN 978-84-09-36657-6 Abstractlopez_rojas_2021_pvc3_greenland.pdf

n/a

2023
Werneburg, I., Pommery Y., Ruciński M., Kästle B., Cohen G. J., Natchev N., Mateus O., & Ferreira G. D. (2023).  Functional morphology of the skull of Henodus chelyops (Placodontia). International Congress of Vertebrate Morphology Cairns - QLD - Australia 28 July - 1 August 2023. The Anatomical Record. 232-233. Abstractwerneburg_et_al_2023_henodus_icvm_2023_abstracts_updated_8_14-1693344432.pdf

n/a

López-Rojas, V., Clemmensen L. B., Milàn J., Wings O., Klein N., & Mateus O. (2023).  A new phytosaur species (Archosauriformes) from the Upper Triassic of Jameson Land, central East Greenland. Journal of Vertebrate PaleontologyJournal of Vertebrate Paleontology. e2181086., 2023: Taylor & Francis Abstracta_new_phytosaur_species_archosauriformes_from_the_upper_triassic_of_jameson_land_central_east_greenland.pdfWebsite

ABSTRACTHerein we describe phytosaurs from thin fluvial overbank sandstones of the Upper Triassic Malmros Klint Formation of the Fleming Fjord Group (central East Greenland). The new sample includes more than 150 disarticulated bones and teeth from small to large specimens belonging to at least four individuals. The fossils mostly consist of teeth and postcranial elements and permit the recognition of a new species of Mystriosuchus, M. alleroq, diagnosed by an L-shaped quadratojugal whose anterior suture trends anterodorsally and a tripartite degree of heterodonty. Humeral diaphyseal histology of one specimen reveals a fairly compact cortex that surrounds a cancellous medullary region followed by a remodeling zone containing scattered secondary osteons. Primary bone tissue is parallel-fibred with a moderate to low vascular density. The cortex is cyclically interrupted by distinct growth marks indicating a seasonal environment. A change in growth rate from moderate to low is documented within the outer cortex, indicating that at least this individual was close to somatic maturity. Mystriosuchus has formerly been known as an exclusively European taxon. The new findings support the European faunal influence in East Greenland during the Late Triassic inferred from other taxa such as temnospondyls and archosaurs. The mid-late Norian age of European Mystriosuchus suggests an additional age constraint for the vertebrate-bearing portion of the Malmros Klint Formation.

2025
Jiangzuo, Q., Madurell-Malapeira J., Li X., Estraviz-López D., Mateus O., Testu A., Li S., Wang S., & Deng T. (2025).  Insights on the evolution and adaptation toward high-altitude and cold environments in the snow leopard lineage. Science Advances. 11, eadp5243., Number 3 AbstractWebsite

How snow leopard gradually adapted to the extreme environments in Tibet remains unexplored due to the scanty fossil record in Tibet. Here, we recognize five valid outside-Tibet records of the snow leopard lineage. Our results suggest that the snow leopard dispersed out of the Tibetan Plateau multiple times during the Quaternary. The osteological anatomy of the modern snow leopard shows adaptation to the steep slope and, to a lesser extent, cold/high-altitude environment. Fossils and phylogeny suggest that the snow leopard experienced a gradual strengthening of such adaptation, especially since the Middle Pleistocene ( 0.8 million years). Species distribution modeling suggests that the locations of the fossil sites are not within most suitable area, and we argue that local landscape features are more influential factors than temperature and altitude alone. Our study underscores the importance of integrating morphology, fossil records, and species distribution modeling, to comprehensively understand the evolution, ecology, and inform conservation strategies for endangered species. Integrated morphology, fossil records, and SDM reveal the evolution and adaptation in the snow leopard lineage.