Publications

Export 170 results:
Sort by: Author Title Type [ Year  (Asc)]
2021
Moreno-Azanza, M., Ezquerro L., Gasca J. M., Díaz-Berenguer E., Nuñez-Lahuerta C., Pérez-Pueyo M., Puértolas-Pascual E., Sellés A. G., Vila B., & Laita E. (2021).  Two latest Cretaceous egg localities in the external sierras (Southern Pyrenees, Huesca Province, NE Spain). Palaeovertebrata - XVIII annual conference of the European Association of Vertebrate Palaeontologists. 44, 120-121. Abstractmoreno-azanza_et_al_2021_eggs_eavp_abstract.pdf

n/a

Marx, M. P., Mateus O., Polcyn M. J., Schulp A. S., Gonçalves O. A., & Jacobs L. L. (2021).  The cranial anatomy and relationships of Cardiocorax mukulu (Plesiosauria: Elasmosauridae) from Bentiaba, Angola. PLOS ONE. 16(8), e0255773 - ., 2021/08/17: Public Library of Science Abstractmarx_et_al_2021_cardiocorax_angola.pdfWebsite

We report a new specimen of the plesiosaur Cardiocorax mukulu that includes the most complete plesiosaur skull from sub-Saharan Africa. The well-preserved three-dimensional nature of the skull offers rare insight into the cranial anatomy of elasmosaurid plesiosaurians. The new specimen of Cardiocorax mukulu was recovered from Bentiaba, Namibe Province in Angola, approximately three meters above the holotype. The new specimen also includes an atlas-axis complex, seventeen postaxial cervical vertebrae, partial ribs, a femur, and limb elements. It is identified as Cardiocorax mukulu based on an apomorphy shared with the holotype where the cervical neural spine is approximately as long anteroposteriorly as the centrum and exhibits a sinusoidal anterior margin. The new specimen is nearly identical to the holotype and previously referred material in all other aspects. Cardiocorax mukulu is returned in an early-branching or intermediate position in Elasmosauridae in four out of the six of our phylogenetic analyses. Cardiocorax mukulu lacks the elongated cervical vertebrae that is characteristic of the extremely long-necked elasmosaurines, and the broad skull with and a high number of maxillary teeth (28–40) which is characteristic of Aristonectinae. Currently, the most parsimonious explanation concerning elasmosaurid evolutionary relationships, is that Cardiocorax mukulu represents an older lineage of elasmosaurids in the Maastrichtian.

Beccari, V., Pinheiro F. L., Nunes I., Anelli L. E., Mateus O., & Costa F. R. (2021).  Osteology of an exceptionally well-preserved tapejarid skeleton from Brazil: Revealing the anatomy of a curious pterodactyloid clade. PLOS ONE. 16(8), e0254789 - ., 2021/08/25: Public Library of Science Abstractbeccari_et_al_2021.pdfWebsite

A remarkably well-preserved, almost complete and articulated new specimen (GP/2E 9266) of Tupandactylus navigans is here described for the Early Cretaceous Crato Formation of Brazil. The new specimen comprises an almost complete skeleton, preserving both the skull and post-cranium, associated with remarkable preservation of soft tissues, which makes it the most complete tapejarid known thus far. CT-Scanning was performed to allow the assessment of bones still covered by sediment. The specimen can be assigned to Tupa. navigans due to its vertical supra-premaxillary bony process and short and rounded parietal crest. It also bears the largest dentary crest among tapejarine pterosaurs and a notarium, which is absent in other representatives of the clade. The new specimen is here regarded as an adult individual. This is the first time that postcranial remains of Tupa. navigans are described, being also an unprecedented record of an articulated tapejarid skeleton from the Araripe Basin.

2022
Martino, R., Ríos M., Mateus O., Rook L., & Pandolf L. (2022).  New insights into the hippopotamid (Mammalia, Hippopotamidae) from the Casino Basin (Tuscany, Italy). XIX Annual conference of the European Association of Vertebrate Palaeontologists (19th EAVP)At: Benevento, Italy. 119. Abstract
n/a
Saleiro, A., Guillaume A. R. D., Rotatori F. M., Ríos-Ibañez M., López E. D., Conti S., Martino R., Puértolas-Pascual E., Mateus O., & Moreno-Azanza M. (2022).  A beta taxonomy approach to Late Jurassic and Early Cretaceous dinosaur assemblages. Abstract book of the XIX Annual Conference of the European Association of Vertebrate Palaeontologists, Benevento/Pietraroja, Italy, 27th June-2 nd July 2022.. 176-177.: PalaeoVertebrata, Special Volume 1- 2022, 224. Doi: 10.18563/pv.eavp2022 Abstractsaleiroetal_2022-eavp.pdf

n/a

Moreno-Azanza, M., Pérez-Pueyo M., Puértolas-Pascual E., Núñez-Lahuerta C., Mateus O., Bauluz B., Bádenas B., & Canudo J. I. (2022).  Cáscaras de huevo de los últimos cocodrilomorfos del Cretácico (Huesca, España). XXXVII Jornadas de Paleontología SEP - V Congreso Ibérico de Paleontología. p. 119. Abstract2022_moreno-azanza_etal_sep.pdf

n/a

Pereira, A. M., Silva M. M., & Mateus O. (2022).  First record of Phymactis papillosa (Lesson, 1830), a Pacific south sea anemone in European shores. Journal of the Marine Biological Association of the United Kingdom. 1–4.: Cambridge University Press Abstractfirst-record-of-phymactis-papillosa-lesson-1830-a-pacific-south-sea-anemone-in-european-shores.pdfWebsite

n/a

Hendrickx, C., Bell P. R., Pittman M., Milner A. R. C., Cuesta E., O'Connor J., Loewen M., Currie P. J., Mateus O., Kaye T. G., & Delcourt R. (2022).  Morphology and distribution of scales, dermal ossifications, and other non-feather integumentary structures in non-avialan theropod dinosaurs. Biological Reviews. , Number n/a Abstracthendrickxetal.2021.morphologyanddistributionofscales.pdfWebsite

ABSTRACT Modern birds are typified by the presence of feathers, complex evolutionary innovations that were already widespread in the group of theropod dinosaurs (Maniraptoriformes) that include crown Aves. Squamous or scaly reptilian-like skin is, however, considered the plesiomorphic condition for theropods and dinosaurs more broadly. Here, we review the morphology and distribution of non-feathered integumentary structures in non-avialan theropods, covering squamous skin and naked skin as well as dermal ossifications. The integumentary record of non-averostran theropods is limited to tracks, which ubiquitously show a covering of tiny reticulate scales on the plantar surface of the pes. This is consistent also with younger averostran body fossils, which confirm an arthral arrangement of the digital pads. Among averostrans, squamous skin is confirmed in Ceratosauria (Carnotaurus), Allosauroidea (Allosaurus, Concavenator, Lourinhanosaurus), Compsognathidae (Juravenator), and Tyrannosauroidea (Santanaraptor, Albertosaurus, Daspletosaurus, Gorgosaurus, Tarbosaurus, Tyrannosaurus), whereas dermal ossifications consisting of sagittate and mosaic osteoderms are restricted to Ceratosaurus. Naked, non-scale bearing skin is found in the contentious tetanuran Sciurumimus, ornithomimosaurians (Ornithomimus) and possibly tyrannosauroids (Santanaraptor), and also on the patagia of scansoriopterygids (Ambopteryx, Yi). Scales are surprisingly conservative among non-avialan theropods compared to some dinosaurian groups (e.g. hadrosaurids); however, the limited preservation of tegument on most specimens hinders further interrogation. Scale patterns vary among and/or within body regions in Carnotaurus, Concavenator and Juravenator, and include polarised, snake-like ventral scales on the tail of the latter two genera. Unusual but more uniformly distributed patterning also occurs in Tyrannosaurus, whereas feature scales are present only in Albertosaurus and Carnotaurus. Few theropods currently show compelling evidence for the co-occurrence of scales and feathers (e.g. Juravenator, Sinornithosaurus), although reticulate scales were probably retained on the mani and pedes of many theropods with a heavy plumage. Feathers and filamentous structures appear to have replaced widespread scaly integuments in maniraptorans. Theropod skin, and that of dinosaurs more broadly, remains a virtually untapped area of study and the appropriation of commonly used techniques in other palaeontological fields to the study of skin holds great promise for future insights into the biology, taphonomy and relationships of these extinct animals.

Puértolas‐Pascual, E., Serrano‐Martínez A., Kuzmin I. T., & Mateus O. (2022).  Neuroanatomy of the Cenomanian crocodylomorph Portugalosuchus. XIX Annual Conference of the European Association of Vertebrate Paleontologists. 170-171. Abstractpuertolas-pascoal_et_al_2022_portugalosuchus_eavp_2022_abstract_volume.pdf

n/a

Moreno-Azanza, M., Pérez-Pueyo M., Puértolas-Pascual E., Núñez-Lahuerta C., Mateus O., Bauluz B., Bádenas B., & Canudo J. I. (2022).  A new crocodylomorph related ootaxon from the late Maastrichtian of the Southern Pyrenees (Huesca, Spain). Historical Biology. 1-10.: Taylor & Francis Abstracta_new_crocodylomorph_related_ootaxon_from_the_late_maastrichtian_of_the_southern_pyrenees_huesca_spain.pdfWebsite

ABSTRACTCrocodylomorph eggs and eggshells are known as old as the Late Jurassic and are frequent components of most multiootaxic eggshell assemblages. Classified within the oofamily Krokolithidae, thei histo- and ultrastructures are conservative throughout geological time, characterised by inverted-trapezoid-shaped shell units that grow from highly spaced basal knobs and present a diagnostic tabular ultrastructure. Here, we report 327 eggshell fragments from a new fossil site from the Maastrichtian of the Southern Pyrenees, Veracruz 1, and erect a new oogenus and oospecies, Pachykrokolithus excavatum oogen. et oosp. nov. characterised by crocodyloid morphotype and a prominent rugosocavate ornamentation. Eggshells from the slightly older locality of Blasi 2b, previously reported as aff. Krokolithidae, are also assigned to this new ootaxon. Different crocodylomorph taxa coexisted during the Late Cretaceous of the Tremp Basin, hindering the attribution of Pachykrokolithus excavatum oogen. et oosp. nov. to a single clade. Nevertheless, allodaposuchid eusuchians were dominant in this ecosystem, and are the most probable producers of Pachykrokolithus excavatum oogen. et oosp. nov. eggs.

López-Rojas, V., Puértolas-Pascual E., Marinheiro J., Mateus O., & Mateus S. (2022).  A new goniopholidid skull from the Late Jurassic of Lourinhã, Portugal. XXVII Jornadas SEP e V Congreso Ibérico de Paleontologia. 101., Cuencalopez-rojas_et_al_2022_goniopholis_jornadas_sep_cuenca_abstract_2022.pdf
Puértolas-Pascual, E., Serrano-Martínez A., Kuzmin I. T., & Mateus O. (2022).  Paleoneuroanatomía de Portugalosuchus, un cocodrilomorfo eusuquio del Cenomaniense de Portugal. XXXVII Jornadas SEP y V Congreso Ibérico de Paleontología. 153., Cuenca: ISBN 13: 978-84-09-44478-6 Abstractpuertolas-pascula_et_al_2022_portugalosuchus_jornadas_sep_cuenca_abstract_2022.pdf

n/a

Fernandes, A. E., Mateus O., Andres B., Polcyn M. J., Schulp A. S., Gonçalves A. O., & Jacobs L. L. (2022).  Pterosaurs from the Late Cretaceous of Angola. Diversity. 14, , Number 9 Abstractdiversity-14-00741.pdfWebsite

Here, we describe the first pterosaur remains from Angola, an assemblage of fourteen bones from the Lower Maastrichtian marine deposits of Bentiaba, Namibe Province. One new species is introduced, Epapatelo otyikokolo, gen. et sp. nov., which comprises an articulated partial left humerus and ulna as well as an articulated left ulna and radius (from a second individual). Phylogenetic analysis confirms a non-nyctosaurid pteranodontian attribution for this new taxon and supports a new apomorphy-based clade, Aponyctosauria, which is here defined. Late Cretaceous pteranodontians are rare in Sub-Saharan Africa and throughout the Southern Hemisphere. Preliminary histological analysis also reveals a likely sub-adult age for one of the specimens. This fossil assemblage provides a first glimpse of Angolan pterosaur paleobiodiversity providing further insight into the Gondwanan ecosystems of the Upper Cretaceous.

Martino, R., Ríos M. I., Mateus O., & Pandolfi L. (2022).  Taxonomy, chronology, and dispersal patterns of Western European Quaternary hippopotamuses: New insight from Portuguese fossil material. Quaternary International. Abstractmartino_et_al_2022_hippos_portugal.pdfWebsite

The taxonomy, chronology and dispersal patterns of hippopotamuses in Western Europe are still a matter of debate, despite the long history of researchers on these topics. In this framework, the Portuguese material has never been investigated or recently revised, and it can contribute to increasing our comprehension about Quaternary hippopotamuses. The material considered in this work, collected from sites dated between 1 Ma and 0.13 Ma, is compared with fossil Pleistocene hippopotamuses from the Iberian Peninsula, Italy, Germany and Greece, in order to contribute into the discussion on evolutionary and dispersal patterns of these large semi-aquatic mammals in Europe during the Pleistocene. Portugal deposits recorded the presence of H. antiquus, starting from 1 Ma up to 0.4 Ma, and H. cf. amphibius during the late Middle Pleistocene. In particular, the occurrence of H. antiquus in Condeixa, dated around 0.4 Ma, can be considered as the LAD of this species in Europe. The paleobiogeography and dispersal patterns of European hippopotamuses are further discussed.

2023
Jacobs, L. L., Polcyn M. J., Mateus O., & Schulp A. S. (2023).  Deep time conservation paleobiology of the Atlantic jigsaw puzzle and the future of the southwestern Angolan coast. Bulletin of the Florida Museum of Natural History. 60(2), 90.: In: Abstracts of the 2nd Conservation Paleobiology Symposium. https://doi … Abstractjacobs_et_al_2023_jigsaw.pdf

n/a

Werneburg, I., Pommery Y., Ruciński M., Kästle B., Cohen G. J., Natchev N., Mateus O., & Ferreira G. D. (2023).  Functional morphology of the skull of Henodus chelyops (Placodontia). International Congress of Vertebrate Morphology Cairns - QLD - Australia 28 July - 1 August 2023. The Anatomical Record. 232-233. Abstractwerneburg_et_al_2023_henodus_icvm_2023_abstracts_updated_8_14-1693344432.pdf

n/a

Puértolas-Pascual, E., Kuzmin I. T., Serrano-Martínez A., & Mateus O. (2023).  Neuroanatomy of the crocodylomorph Portugalosuchus azenhae from the late cretaceous of Portugal. Journal of Anatomy. n/a, , Number n/a Abstractjournal_of_anatomy_-_2023_-_pu_rtolas-pascual_-_neuroanatomy_of_the_crocodylomorph_portugalosuchus_azenhae_from_the_late.pdfWebsite

Abstract We present the first detailed braincase anatomical description and neuroanatomical study of Portugalosuchus azenhae, from the Cenomanian (Late Cretaceous) of Portugal. This eusuchian crocodylomorph was originally described as a putative Crocodylia and one of the oldest representatives of this clade; however, its phylogenetic position remains controversial. Based on new data obtained from high resolution Computed Tomography images (by micro-CT scan), this study aims to improve the original description of this taxon and also update the scarce neuroanatomical knowledge of Eusuchia and Crocodylia from this time interval, a key period to understand the origin and evolution of these clades. The resulting three-dimensional models from the CT data allowed a detailed description of its well-preserved neurocranium and internal cavities. Therefore, it was possible to reconstruct the cavities of the olfactory region, nasopharyngeal ducts, brain, nerves, carotid arteries, blood vessels, paratympanic sinus system and inner ear, which allowed to estimate some neurosensorial capabilities. By comparison with other crocodylomorphs, these analyses showed that Portugalosuchus, back in the Cenomanian, already displayed an olfactive acuity, sight, hearing and cognitive skills within the range of that observed in other basal eusuchians and crocodylians, including extant species. In addition, and in order to test its disputed phylogenetic position, these new anatomical data, which helped to correct and complete some of the original observations, were included in one of the most recent morphology-based phylogenies. The position of Portugalosuchus differs slightly from the original publication since it is now located as a “thoracosaurid” within Gavialoidea, but still as a crocodylian. Despite all this, to better contrast these results, additional phylogenetic analyses including this new morphological character coding together with DNA data should be performed.

2024
Jacobs, L. L., Schröder S., de Sousa N., Dixon R., Fiordalisi E., Marechal A., Mateus O., Nsungani P. C., Polcyn M. J., do Pereira G. C. R., Rochelle-Bates N., Schulp A. S., Scotese C. R., Sharp I., Silvano C. G., Swart R., & Vineyard D. P. (2024).  The Atlantic jigsaw puzzle and the geoheritage of Angola. Geological Society, London, Special Publications. 543, SP543-2022-301., Number 1 AbstractWebsite

The jigsaw-puzzle fit of South America and Africa is an icon of plate tectonics and continental drift. Fieldwork in Angola since 2002 allows the correlation of onshore outcrops and offshore geophysical and well-core data in the context of rift, sag, salt, and post-salt drift phases of the opening of the central South Atlantic. These outcrops, ranging in age from >130 Ma to <71 Ma, record Early Cretaceous outpouring of the Etendeka-Paraná Large Igneous Province (Bero Volcanic Complex) and rifting, followed by continental carbonate and siliciclastic deposition (Tumbalunda Formation) during the sagging of the nascent central South Atlantic basin. By the Aptian, evaporation of sea water resulted in thick salt deposits (Bambata Formation), terminated by sea floor spreading. The Equatorial Atlantic Gateway began opening by the early Late Cretaceous (100 Ma) and allowed flow of currents between the North and South Atlantic, creating environmental conditions that heralded the introduction of marine reptiles. These dramatic outcrops are a unique element of geoheritage because they arguably comprise the most complete terrestrially exposed geological record of the puzzle-like icon of continental drift.

López-Rojas, V., Mateus S., Marinheiro J., Mateus O., & Puértolas-Pascual E. (2024).  A new goniopholidid crocodylomorph from the Late Jurassic of Portugal. Palaeontologia Electronica. 27(1), 1-33.: Paleontological Society Abstractgoniopholididae_1316_compressed.pdf

n/a